Coupling of Quantum Logics

S. Pulmannová

Mathematical Institute of the Slovak Academv of Sciences, 814 73 Bratislava, Czechoslovakia

Received April 15, 1982

A quantum logic is a couple (L, M) , where L is a logic and M is a quite full set of states on L. A tensor product in the category of quantum logics is defined and a comparison with the definition of free orthodistributive product of orthomodular o lattices is given. Several physically important cases are treated.

1. INTRODUCTION

The problem of coupling of logics was treated by several authors (Aerts, 1979; Aerts and Daubechies, 1978; Matolcsi, 1975; Zecca, 1978, 1979). It is supposed that the logic L of a physical system S , which is composed of two physical systems S_1 and S_2 with the logics L_1 and L_2 , respectively, is a kind of tensor product (or free orthodistributive product) of the logics L_1 and L_2 . Essentially, only the case in which the logics were complete and atomistic orthomodular lattices was treated. In the category of Hilbert space logics, there was shown (Matolcsi, 1975; Aerts and Daubechies, 1978) that there are two tensor products of the logics $L_1(H_1)$ and $L_2(H_2)$, namely, $L(H_1 \otimes H_2)$, i.e., the logic of the tensor product $H_1 \otimes H_2$, and $L(\overline{H}_1 \otimes H_2)$, i.e., the logic of the tensor product $\overline{H}_1 \otimes H_2$, where \overline{H}_1 is the dual of $H₁$. [The case of real or complex separable Hilbert spaces of the dimension at least three was considered. In the case of complex Hilbert spaces the tensor products $L(H_1 \otimes H_2)$ and $L(\overline{H_1} \otimes H_2)$ are not equivalent.]

The definition of a tensor product (or free orthodistributive product) of orthomodular σ lattices was proposed by Matolcsi (1975) in the following form.

Definition 1. Let $L_i(i \in I)$ and L be orthomodular σ lattices. Then $(L, (u_i)_{i \in I})$ is a tensor product (or free orthodistributive product) of the L_i s 838 **Pulmannova**

if (i) $u_i: L_i \to L$ are orthoinjections ($i \in I$), (ii) $\cup_{i \in I} u_i(L_i)$ generates L, (iii) for every finite or countable subset F of I, $\bigcup_{i \in F} u_i(a_i) = 0$ for $a_i \in L_i$ if and only if at least one a_i is zero, and (iv) $u_i(a_i)$ is compatible with $u_i(a_i)$ for all $i, j \in I$ such that $i \neq j$.

2. TENSOR PRODUCT OF QUANTUM LOGICS

In this paper, we shall call a "quantum logic" the pair (L, M) , where L is an orthomodular σ lattice (we shall call it a logic) and M is a set of states which is quite full for L , i.e.,

$$
\{m \in M : m(a) = 1\} \subset \{m \in M : m(b) = 1\} \qquad \text{implies } a = b
$$

$$
(a, b \in L) \quad (1)
$$

We shall further suppose that the Jauch-Piron condition in the countable form is satisfied, i.e.,

$$
m(a_i) = 1 \quad \text{for all } i = 1, 2, \dots \quad \text{implies } m\left(\bigwedge_{i=1}^{\infty} a_i\right) = 1 \qquad (m \in M) \quad (2)
$$

Basic facts on logics and states can be found in 'Varadarajan (1968).

We shall give a definition of the tensor product in the category of quantum logics. The definition is given for two quantum logics (L_1, M_1) and (L_2, M_2) , but it can be in a natural way generalized to any set (L_i, M_i) , $i \in I$.

Definition 2. Let $(L_1, M_1), (L_2, M_2), (L, M)$ be quantum logics. We say that (L, M) is a tensor product of (L_1, M_1) and (L_2, M_2) if there are mappings α , β such that:

(i) $\alpha: L_1 \times L_2 \rightarrow L$, $\beta: M_1 \times M_2 \rightarrow M$,

$$
\beta(m_1, m_2)(\alpha(a_1, a_2)) = m_1(a_1) m_2(a_2)
$$

for any $m_i \in M_i$, $a_i \in L_i$, $i = 1, 2$. Here $L_1 \times L_2$ and $M_1 \times M_2$ are the direct products.

(ii) $\beta[M_1 \times M_2] = {\beta(m_1, m_2) : m_1 \in M_1, m_2 \in M_2}$ is quite full for L.

(iii) L is generated by $\alpha[L_1 \times L_2]$, i.e., the smallest sublogic of L containing all $\alpha(a_1, a_2)$, $a_1 \in L_1$, $a_2 \in L_2$, is L.

We shall denote the product by $(L, M)_{\alpha, \beta}$.

Coupling of Quantum Logics 839

Let L_1, L_2 be orthomodular σ lattices. A map $\psi: L_1 \rightarrow L_2$ is a σ orthohomomorphism if (i) $\psi(1)=1$, (ii) $\psi(\vee_{i=1}^{\infty} a_i)= \vee_{i=1}^{\infty} \psi(a_i)$ for any sequence $(a_i) \subset L_1$, (iii) $\psi(a^{\perp}) = \psi(a)^{\perp}$, $a \in L_1$.

A σ orthohomomorphism is called orthoinjection if it is one-to-one. A σ orthohomomorphism which is one-to-one and onto is a bijection.

Proposition 1. Let us define

$$
\varphi_1: L_1 \to L,
$$
\n $\varphi_2: L_2 \to L$ \n $a_1 \to \alpha(a_1, 1)$ \n $a_2 \to \alpha(1, a_2)$

Then φ_1, φ_2 are orthoinjections.

Proof. From $\beta(m_1, m_2)(\alpha(1, 1)) = m_1(1)m_2(1) = 1$ for all $m_1 \in M_1, m_2$ $\epsilon \in M_2$, and from the fact that $\beta[M_1 \times M_2]$ is quite full for L, we obtain that $\alpha(1, 1) = 1$. (We write 1 for the greatest element in any of L_1, L_2, L). From this we have that $\varphi_1(1) = 1$, $\varphi_2(1) = 1$. Further,

$$
\beta(m_1, m_2)(\alpha(a_1^{\perp}, 1)) = m_1(a_1^{\perp})m_2(1)
$$

= $m_1(a_1^{\perp}) = 1 - m_1(a_1) = (1 - m_1(a_1))m_2(1)$
= $1 - m_1(a_1)m_2(1) = 1 - \beta(m_1, m_2)(\alpha(a_1, 1))$
= $\beta(m_1, m_2)(\alpha(a_1, 1)^{\perp})$

for all $m_1 \in M_1, m_2 \in M_2$, which implies that $\varphi_1(a_1^{\perp}) = \varphi_1(a_1)^{\perp}$. Similarly, $\varphi_2(a_2^{-1}) = \varphi_2(a_2)^{-1}$. Now let $(a_1^k)_{k=1}^{\infty}$ be any sequence in L_1 . From the Jauch-Piron property (1) we get $\beta(m_1, m_2)(\alpha(\Lambda_k a_1^k, 1)) = 1$ iff $m_1(\Lambda_k a_1^k)$ = 1 iff $m_1(a_1^k)$ = 1 for all k iff $\beta(m_1, m_2)$ ($\wedge_k \alpha(a_1^k, 1)$) = 1 for any $m_1 \in$ $M_1, m_2 \in M_2$, which implies that $\alpha(\Lambda_k a_1^k, 1) = \Lambda_k \alpha(a_1^k, 1)$, i.e., $\varphi_1(\Lambda_k a_1^k)$ $= \wedge_{k} \varphi_1(a_1^{k})$. By the duality we obtain that $\varphi_1(\vee_k a_1^{k}) = \vee_k \varphi_1(a_1^{k})$, so that φ_1 is a σ orthohomomorphism. The same holds for φ_2 . Now $\beta(m_1, m_2)(\alpha(a_1, 1)) = \beta(m_1, m_2)(\alpha(a_1', 1))$ for all $m_1 \in M_1, m_2 \in M_2$ implies that $m_1(a_1) = m_1(a_1')$ for all $m_1 \in M_1$, so that $a_1 = a_1'$. From this we see that φ_1 and φ_2 are injections.

Proposition 2. For any $a_1 \in L_1$ and $a_2 \in L_2$, $\varphi_1(a_1)$ is compatible with $\varphi_2(a_2)$.

840 Pulmannovi

Proof. For any $m_1 \in M_1$, $m_2 \in M_2$,

$$
\beta(m_1, m_2)(\alpha(a_1, 1) \wedge \alpha(1, a_2)) = 1 \quad \text{iff } \beta(m_1, m_2)(\alpha(a_1, 1)) = 1,
$$

\n
$$
\beta(m_1, m_2)(\alpha(1, a_2)) = 1 \quad \text{iff } m_1(a_1) = 1, m_2(a_2) = 1 \text{ iff }
$$

\n
$$
\beta(m_1, m_2)(\alpha(a_1, a_2)) = 1
$$

which implies that $\alpha(a_1, 1) \wedge \alpha(1, a_2) = \alpha(a_1, a_2)$. Now

$$
\beta(m_1, m_2)(\alpha(a_1, 1) \wedge \alpha(1, a_2)) = 1 \quad \text{iff } \beta(m_1, m_2)(\alpha(a_1, 1)) = 1,
$$

$$
\beta(m_1, m_2)(\alpha(1, a_2)) = 1 \quad \text{iff } m_1(a_1) = 1, m_2(a_2) = 1 \text{ iff}
$$

$$
\beta(m_1, m_2)(\alpha(a_1, a_2)) = 1
$$

for any $m_1 \in M_1, m_2 \in M_2$, implies that $\varphi_1(a_1)$ and $\varphi_2(a_2)$ are independent (in the probabilistic sense) in all states of $\beta[M_1 \times M_2]$. This implies, in particular, that $\varphi_1(a_1)$ and $\varphi_2(a_2)$ are compatible (see Gudder, 1968).

> *Theorem 1.* Let $(L, M)_{\alpha, \beta}$ be the tensor product of (L_1, M_1) and (L_1, M_2) in the sense of Definition 2. If we put

$$
\varphi_1: L_1 \to L,
$$
\n $\varphi_2: L_2 \to L$ \n $a_1 \to \alpha(a_1, 1)$ \n $a_2 \to \alpha(1, a_2)$

then $(L, \varphi_1, \varphi_2)$ is the tensor product of L_1 and L_2 in the sense of Definition 1.

Proof. (i) Evidently, $u_1(L_1) \cup u_2(L_2) \subset [u_1(L_1) \cup u_2(L_2)]'' \subset L'' = L$. On the other hand, $[u_1(L_1) \cup u_2(L_2)]$ " is an orthomodular sub- σ -lattice of L, containing both $u_1(L_1)$ and $u_2(L_2)$. As L is generated by $u_1(L_1)$ and $u_2(L_2)$, we obtain that $[u_1(L_1)\cup u_2(L_2)]'' = L$.

To prove (i), let $\varphi_1(a_1) \wedge \varphi_2(a_2) = 0$ and $a_1 \neq 0$. As $\varphi_1(a_1) \wedge \varphi_2(a_2) =$ $\alpha(a_1, a_2)$, we get from $\beta(m_1, m_2)(\varphi_1(a_1) \wedge \varphi_2(a_2)) = 0$ for any $m_1 \in M_1, m_2$ M_2 , that $m_1(a_1)m_2(a_2) = 0$ for any $m_1 \in M_1, m_2 \in M_2$. Let $m_1^0 \in M_1$ be such that $m_1^0(a_1) = 1$. (Such m_1^0 exists because M_1 is quite full for L_1 and $a_1 \neq 0$.) Then $m_1^0(a_1)m_2(a_2) = 0$ for any $m_2 \in M_2$ implies that $m_2(a_2) = 0$ for any $m_2 \in M_2$, i.e., $a_2 = 0$.

(ii) By Definition 2 (iii), L is generated by $\alpha[L_1 \times L_2]$. As for any $a_1 \in L_1, a_2 \in L_2, \ \alpha(a_1, a_2) = \varphi_1(a_1) \wedge \varphi_2(a_2)$, we see that $\varphi_1(L_1) \cup \varphi_2(L_2)$ generates L .

3. SOME PROPERTIES OF THE TENSOR PRODUCT

Let (L, u_1, u_2) be the free orthodistributive product of L_1 and L_2 in the sense of Definition 1. For a subset M of an orthomodular lattice K put $M' = \{a \in K : a \leftrightarrow b$ for any $b \in M\}$. (We write $a \leftrightarrow b$ if a is compatible with b.) The set K' is the center of K . We shall study the relations between the centers L_1 ', L_2 ', and L'. We shall need the following lemma.

> *Lemma 1.A.* σ homomorphism $u: L_1 \rightarrow L_2$ between two orthomodular σ lattices L_1 , L_2 is injective iff $u(a) = 0$ implies $a = 0$ ($a \in L_1$).

Proof. Let $u(a) = 0$ imply $a = 0$ and let $u(a) \le u(b)$, $a, b \in L_1$. Then $u(a)-u(a\wedge b)=0$ implies $u(a-a\wedge b)=0$ and this implies $a-a\wedge b=0$, i.e., $a = a \wedge b$. Hence, $u(a) \leq u(b)$ implies $a \leq b$. From this it follows that u is injective. The converse implication is clear.

> *Theorem 2.* Let (L, u_1, u_2) be the free orthodistributive product of L_1 and L_2 in the sense of Definition 1. Then the following hold:

> (i) $[u_1(L_1) \cup u_2(L_2)]'' = L$ (ii) $[u_1(L_1) \wedge u_2(L_2)] \cap [u_1(L_1) \wedge u_2(L_2)]' = u_1(L_1') \wedge u_2(L_2')$

> where $K_1 \wedge K_2 = \{a \wedge b : a \in K_1, b \in K_2\}$, K_1 and K_2 are any lattices, and

(iii) $[u_1(L_1') \cup u_2(L_2')]'' = L'$

Proof. (i) Evidently, $u_1(L_1) \cup u_2(L_2) \subset [u_1(L_1) \cup u_2(L_2)]'' \subset L'' = L$. On the other hand, $[u_1(L_1)\cup u_2(L_2)]''$ is an orthomodular sub- σ -lattice of L, containing both $u_1(L_1)$ and $u_2(L_2)$. As L is generated by $u_1(L_1)$ and $u_2(L_2)$, we obtain that $[u_1(L_1) \cup u_2(L_2)]'' = L$.

(ii) As $a \leftrightarrow b$, $a, b \in L_1$, implies $u_1(a) \leftrightarrow u_1(b)$ in L, we have $u_1(L_1') \subset$ $u_1(L_1)'$. By Definition 1 (iv), $u_2(L_2) \subset u_1(L_1)'$ and $u_1(L_1) \subset u_2(L_2)'$. Evidently, $u_1(L_1') \subset u_1(L_1)$. Now if $a \in u_1(L_1') \wedge u_2(L_2')$ is of the form $a =$ $u_1(a_1) \wedge u_2(a_2)$, then $u_1(a_1) \leftrightarrow u_1(L_1)$ [i.e., $u_1(a_1) \leftrightarrow u_1(b_1)$ for any $b_1 \in L_1$] and $u_1(a_1) \leftrightarrow u_2(L_2)$, from which it follows that $u_1(a_1) \leftrightarrow u_1(L_1) \wedge u_2(L_2)$. Similarly, $u_2(a_2) \leftrightarrow u_1(L_1) \land u_2(L_2)$. From this it follows that $u_1(a_1) \land u_2(a_2)$ $u_2(a_2) \in [u_1(L_1) \wedge u_2(L_2)]'$. Hence $u_1(L_1') \wedge u_2(L_2') \subset [u_1(L_1) \wedge u_2(L_2)]'$ $\cap u_1(L_1) \wedge u_2(L_2)$.

On the other hand, let $a \in [u_1(L_1) \wedge u_2(L_2)]' \cap u_1(L_1) \wedge u_2(L_2)$ be of the form $a = u_1(a_1) \wedge u_2(a_2)$ $(a_1 \in L_1, a_2 \in L_2)$. We have $a \leftrightarrow u_1(L_1) \wedge$ $u_2(L_2)$, especially $a \leftrightarrow u_1(b_1)$ for all $b_1 \in L_1$ and $a \leftrightarrow u_2(b_2)$ for all $b_2 \in L_2$.

Thus

$$
u_1(b_1) = [u_1(a_1) \wedge u_2(a_2)] \wedge u_1(b_1) \vee [u_1(a_1) \wedge u_2(a_2)]^{\perp} \wedge u_1(b_1)
$$

=
$$
[u_1(a_1) \wedge u_2(a_2)] \wedge u_1(b_1) \vee [u_1(a_1)^{\perp} \vee u_2(a_2)^{\perp}] \wedge u_1(b_1)
$$

and

$$
u_1(b_1) \wedge u_2(a_2) = u_1(a_1) \wedge u_2(a_2) \wedge u_1(b_1) \vee [u_1(a_1)^{\perp} \vee u_2(a_2)^{\perp}]
$$

$$
\wedge u_2(a_2) \wedge u_1(b_1)
$$

= $u_1(a_1 \wedge b_1) \wedge u_2(a_2) \vee u_1(a_1^{\perp} \wedge b_1) \wedge u_2(a_2)$
= $u_1(a_1 \wedge b_1) \vee a_1^{\perp} \wedge b_1) \wedge u_2(a_2)$. (3)

Now let us consider the map

$$
u_{1, a_2}: L_1 \to L
$$

$$
a_1 \mapsto u_1(a_1) \wedge u_2(a_2)
$$

where $0 \neq a_2 \in L_2$ is fixed. As $u_1(a_1) \leftrightarrow u_2(a_2)$ for all $a_1 \in L_1$, $u_1 a_2$, is a σ orthohomomorphism from L_1 into $L_{[0, u_2(a_2)]} = \{b \in L : b \leq u_2(a_2)\}$. By Lemma 1, $u_{1,a}$, is injective. From this it follows that (3) implies that $b_1 = a_1 \wedge b_1 \vee a_1^{\perp} \wedge b_1$ for any $b_1 \in L_1$, hence $a_1 \in L_1'$. Similarly, $a_2 \in L_2'$. Thus we have shown that

$$
[u_1(L_1) \wedge u_2(L_2)]' \cap u_1(L_1) \wedge u_2(L_2) \subseteq u_1(L_1') \wedge u_2(L_2')
$$

(iii) For any A, $B \subset L$ we have $(A \cap B)' \supset (A' \cup B')''$. By (ii) we get

$$
[u_1(L'_1) \wedge u_2(L'_2)]' = (u_1(L_1) \wedge u_2(L_2) \cap [u_1(L_1) \wedge u_2(L_2)]')'
$$

$$
\supset ([u_1(L_1) \wedge u_2(L_2)]' \cup [u_1(L_1) \wedge u_2(L_2)]'')
$$

As $u_1(L_1) \subset u_1(L_1) \wedge u_2(L_2)$, $u_2(L_2) \subset u_1(L_1) \wedge u_2(L_2)$, we have

$$
[u_1(L_1) \cup u_2(L_2)]'' \subset [u_1(L_1) \wedge u_2(L_2)]''
$$

On the other hand, as $a \leftrightarrow b_1$, $a \leftrightarrow b_2$ imply $a \leftrightarrow b_1 \land b_2$, $a, b_1, b_2 \in L$, we get

$$
[u_1(L_1) \cup u_2(L_2)]' \subset [u_1(L_1) \wedge u_2(L_2)]'
$$

Coupling of Quantum Logics 843

i.e.,

$$
[u_1(L_1) \cup u_2(L_2)]'' = [u_1(L_1) \wedge u_2(L_2)]''
$$

Hence

$$
\begin{aligned} \left(\left[u_1(L_1) \wedge u_2(L_2) \right]' \cup \left[u_1(L_1) \wedge u_2(L_2) \right]' \right)' \\ \supseteq \left[u_1(L_1) \wedge u_2(L_2) \right]'' = \left[u_1(L_1) \cup u_2(L_2) \right]'' = L \end{aligned}
$$

by (i). Thus

$$
[u_1(L'_1) \wedge u_2(L'_2)]' = L
$$

Taking the commutant once again we obtain

$$
[u_1(L_1') \wedge u_2(L_2')]'' = L'.
$$

Corollary 1. Let (L, u_1, u_2) be the product of L_1, L_2 . Then L is irreducible only if L_1 and L_2 are irreducible.

Proof. If L is irreducible, then $L' = \{0, 1\}$. By Theorem 2, (iii) $u_1(L_1') \subset$ $L', u_2(L_2') \subset L'$, which implies that $L'_1 = L'_2 = \{0, 1\}$.

> *Corollary 2.* The tensor product (L, u_1, u_2) is distributive iff L_1 and $L₂$ are distributive.

Proof. Let L_1 and L_2 be distributive, i.e., $L_i = L'_i$, $i = 1, 2$. From Theorem 2, (iii) we get $u_1(L_1') = u_1(L_1) \subset L'$, $u_2(L_2') = u_2(L_2) \subset L'$. As $u_1(L_1)$ and $u_2(L_2)$ generate L, we get $L' = L$. From this it follows that L is distributive. If L is distributive, then $L = L'$. For $i = 1, 2, u_i(L_i) \subset L = L'$ implies $u_i(L_i) \subset u_i(L_i)' \cap u_i(L_i) = u_i(L_i')$, i.e., $u_i(L_i) = u_i(L_i')$, which implies that $L_i = L'_i$.

Let (L, u_1, u_2) be a product of L_1 and L_2 . For any $0 \neq a_2 \in L_2$ $(0 \neq a_1 \in L_1)$ the maps $u_{1, a_2(u_2, a_1)}$ defined by $u_{1, a_2}(a_1) = u_1(a_1) \wedge$ $u_2(a_2)[u_{2,a_1}(a_2) = u_1(a_1) \wedge u_2(a_2)]$ are injective [see proof of Theorem 2, (ii)].

> *Corollary 3.* Let L_1, L_2 be irreducible orthomodular σ lattices and (L, u_1, u_2) be their product. To any $c \in L'$, $c \neq 0, 1$, let there be $b_2 \in L_2$ (or $b_1 \in L_1$) such that u_{1, b_2} (or u_{2, b_1}) is surjective and $c \wedge u_2(b_2) = u_2(b_2)$, 0 (or $c \wedge u_1(b_1) = u_1(b_1)$, 0). Then L is irreducible.

Proof. Let $c \in L'$, $c \neq 0, 1$. The map u_{1, b_2} is injective and surjective, i.e., it is a bijection. Let $c_1 \in L_1$ be such that $u_{1, b_2}(c_1) = c \wedge u_2(b_2)$. Then

844 Pulmannova

 $u_{1,b_2}(c_1) \leftrightarrow u_{1,b_2}(L_1)$ implies $c_1 \leftrightarrow L_1, c_1 \neq 0, 1$, a contradiction with the irreducibility of L_1 .

Remark 1. The statements of Theorem 2 are similar to that proved in Zecca (1968) by another definition of the tensor product.

Example 1. Let (X, S) be a measurable space, where S is a σ algebra of subsets of X , and let \mathfrak{N} be a set of probability measures on S containing all measures μ_r , concentrated on the points $x \in X$. Evidently, \mathfrak{M} is quite full for S, and the Jauch-Piron property in the countable form is fulfilled. A quantum logic (S, \mathfrak{M}) of the type just described is called a classical logic (Gudder, 1970). Let (S_i, \mathfrak{M}_i) , $i=1,2$, be two classical logics, where S_i is a σ algebra of subsets of a space X_i , $i = 1, 2$. Let S be the product σ algebra on $X_1 \times X_2$. The set of all product measures $\mu_x \times \mu_y$, $x \in X_1, y \in X_2$, is quite full for S. Let us set

$$
\alpha: S_1 \times S_2 \to S
$$

\n
$$
E \times F \to E \times F, \text{ i.e., } \alpha \text{ is the identity map}
$$

\n
$$
\beta: \mathfrak{M}_1 \times \mathfrak{M}_2 \to \mathfrak{M}
$$

\n
$$
(\mu_1, \mu_2) \to \mu_1 \times \mu_2
$$

where $\mathfrak{M} = {\mu_1 \times \mu_2 : \mu_1 \in \mathfrak{M}_1, \mathfrak{M}_2 \in \mathfrak{M}_2}$. Then

$$
\beta(\mu_1, \mu_2)(\alpha(E_1, E_2)) = \mu_1 \times \mu_2(E_1 \times E_2) = \mu_1(E_1)\mu_2(E_2)
$$

and it can be easily checked that $(S, \mathfrak{M})_{\alpha,\beta}$ is the tensor product of (S_1, \mathfrak{M}_1) and (S_2, \mathfrak{M}_2) in the sense of Definition 2.

Example 2. Let us consider the case in which (L_1, M_1) is a quantum logic and (L_2, M_2) is a classical logic. This case is important from the physical point of view: it describes measurements of quantum observables by classical measurement devices. Let us set

$$
\varphi_1: L_1 \to L,
$$
\n $\varphi_2: L_2 \to L$ \n $a \to \alpha(a, 1)$ \n $b \to \alpha(1, b)$

where $(L, M)_{\alpha, \beta}$ is the tensor product of (L_i, M_i) , $i = 1, 2$. By Theorem 2, (iii), $\varphi_2(L_2) = \varphi_2(L_2') \subset L'$, where L' is the center of L. If $\{b_i\}_{i=1}^{\infty}$ is any partition of identity in L_2 , then $\{\varphi_2(b_i)\}_{i=1}^{\infty}$ is the partition of identity in L'. Then L can be written as a direct sum $L = \bigoplus_{i=1}^{\infty} L_{[0, \varphi_1(b_i)]}$, and the logics $L_{[0, \varphi_1(b_1)]}$ are irreducible iff $\varphi_2(b_i)$, $i = 1, 2, \ldots$ are atoms in L'. If the maps

$$
\varphi_{2, b_i}: L_1 \to L
$$

$$
a \mapsto \varphi_1(a) \wedge \varphi_2(b_i)
$$

are surjective, then the logics $L_{[0, \varphi_2(b_i)]}$ are isomorphic with L_1 , so that L can be written as the direct sum of the copies of L_1 indexed by the set $(b_i)_{i=1}^{\infty}$.

4. TENSOR PRODUCT OF COMPLETE ATOMISTIC LATTICES

We shall consider quantum logics (L, M) , where L is a complete atomistic lattice and M is a set of pure states such that to any atom $e \in L$ there is exactly one state $p \in M$ for which $p(e) = 1$. From the Jauch-Piron property we get that for any $p \in M$, $\{a : p(a) = 1\} = \{a : e \le a\}$, where e is the atom such that $p(e) = 1$. The Jauch-Piron property is then fulfilled not only for countable sets, but for any sets. Clearly, M is quite full for L .

> *Theorem 3.* Let (L_1, M_1) and (L_2, M_2) be two quantum logics such that L_1 and L_2 are complete atomistic orthomodular lattices and M_1 and M_2 are sets of pure states such that to any atom $e_1 \in L_1$ $(e_2 \in L_2)$ there is exactly one state $p_1 \in M_1$ ($p_2 \in M_2$) such that $p_1(e_1)=1$ [$p_2(e_2)=1$]. Let $\alpha: L_1 \rightarrow L_2$ and $\beta: M_1 \rightarrow M_2$ be mappings such that

- (i) $\beta(m)(\alpha(a))=m(a)$ for all $a \in L_1, m \in M_1$
- (ii) β is onto

Then α and β are bijections.

Proof. Let $\beta(m_1) = \beta(m_2)$, then $\beta(m_1)(\alpha(a)) = \beta(m_2)(\alpha(a))$ for any $a \in L_{1\bullet}$ i.e., $m_1(a) = m_2(a)$ for any $a \in L_1$. Hence $m_1 = m_2$. Thus β is one-to-one.

Now $\beta(m)(\alpha(a^{\perp})) = m(a^{\perp}) = 1 - m(a) = 1 - \beta(m)(\alpha(a)) = \beta(m)$ $(\alpha(a)^{\perp})$ for all $\beta(m) \in M_2$, and as $\beta[M_1] = M_2$ and M_2 is quite full, we have $\alpha(a^{\perp}) = \alpha(a)^{\perp}$.

From the Jauch-Piron property we obtain that for any index set *I,* $\beta(m)(\wedge_{i \in I} \alpha(a_i)) = 1 \Leftrightarrow \beta(m)(\alpha(a_i)) = 1$ for all $i \in I \Leftrightarrow m(a_i) = 1$ for all $i \in I \Leftrightarrow m(\wedge_{i \in I} a_i) = 1 \Leftrightarrow \beta(m)(\alpha(\wedge_{i \in I} a_i)) = 1$ for $\beta(m) \in M_2$, hence $\alpha(\wedge_{i\in I}a_i) = \wedge_{i\in I}\alpha(a_i).$

From $\beta(m)(\alpha(1))=m(1)=1$ for all $\beta(m)$ we get $\alpha(1)=1$. Thus we have shown that α is an orthohomomorphism.

If $\alpha(a) = \alpha(b)$, then $\beta(m)(\alpha(a)) = \beta(m)(\alpha(b))$ implies $m(a) = m(b)$ for all $m \in M_1$, so that $a = b$. Hence α is one-to-one.

Let $A_i \subset L_i$ be the set of all atoms in L_i , $i = 1, 2$. Let $s_i: M_i \rightarrow A_i$, $i = 1, 2$ be such that $m_i(s_i(m_i))=1$. Let $a \in A_1$. If $\alpha(a) \notin A_2$, then there are $e_1, e_2 \in A_2, e_1, e_2 \le \alpha(a)$. Let $q_1 = s_2^{-1}(e_1), q_2 = s_2^{-1}(e_2)$ and let $q_1 =$ $\beta(p_1), q_2 = \beta(p_2), p_1, p_2 \in M_1$. Then $q_1(\alpha(a)) = q_2(\alpha(a)) = 1$ implies $p_1(a)$ $p_1(p_2) = p_2(q_1) = 1$, but this implies that $p_1 = p_2$. Hence $e_1 = s_2 \circ \beta(p_1) = 0$ $s_2 \circ \beta(p_2) = e_2$, i.e., $\alpha(a) \in A_2$. For $p \in M_1$, $p(s_1(p)) = 1$ implies that $\beta(p)(\alpha(s_1(p)))=1$, i.e., $s_2 \circ \beta = \alpha \circ s_1$. Let α_{A_1} be α restricted to A_1 . Then $\alpha_{A_1}: A_1 \rightarrow A_2$ and $\alpha_{A_1} = s_2 \circ \beta \circ s_1^{-1}$. As s_1, s_2 and β are bijections, α_{A_1} is also a bijection.

Let $c \in L_2$. Then $c = \vee \{c_i : c_i \in A_2, c_i \leq c\} = \vee \{\alpha_{A_i}(\alpha_{A_i}^{-1}(c_i) : c_i \leq c\} =$ $\alpha(\{\vee \alpha_{\mathcal{A}}\)}^{-1}(c_i): c_i \leq c$, i.e., α is onto. We have shown that α is an isomor- $\mathsf{phism.}$

> *Theorem 4.* Let (L_1, M_1) , (L_2, M_2) , and (L, M) be quantum logics with the properties described in Theorem 3. Let $(L, M)_{\alpha, \beta}$ be the tensor product of (L_1, M_1) and (L_2, M_2) . Then the maps

$$
\varphi_{2,b} \colon L_1 \to L_{[0,\varphi_2(b)]}
$$

$$
a \mapsto \alpha(a,b)
$$

are bijections for any atom $b \in L_2$.

Proof. Let us consider the maps

$$
\varphi_{2,b} \colon L_1 \to L_{[0,\varphi_2(b)]}
$$

$$
a \mapsto \alpha(a,b)
$$

and

$$
\beta_q: M_1 \to \beta \big[M_1 \times \{q\} \big]
$$

$$
p \mapsto \beta(p,q)
$$

where $q \in M_2$ is such that $q(b) = 1$. Let $c_1, c_2 \in L_{[0, \varphi_2(h)]}$. From the fact that β [$M_1 \times M_2$] is quite full, we obtain

$$
\beta(m_1, m_2)(c_1) = 1 \Rightarrow \beta(m_1, m_2)(c_2) = 1
$$
 implies $c_1 \le c_2$

But $c_1, c_2 \leq \varphi_2(b)$, so that

$$
\beta(m_1, m_2)(c_1) = 1 \Rightarrow (m_1, m_2)(\varphi_2(b)) = 1
$$

i.e., $(m_1, m_2)(\alpha(1, b)) = 1$, hence $m_2(b) = 1$. As b is an atom, $m_2 = q$. From this we see that

$$
\beta(m_1, q)(c_1) = 1 \Rightarrow \beta(m_1, q)(c_2) = 1 \text{ implies } c_1 \leq c_2
$$

i.e., the set $\beta[M_1\times \{q\}]$ is quite full for $L_{[0,\varphi_2(b)]}$. As the map $\beta_q: M_1 \rightarrow$ $\beta[M_1\times(q)]$ is onto, it follows from Theorem 3 that $\varphi_{2,b}$ is a bijection.

Corollary 4. The map

$$
\varphi_{1,\,a}\colon L_2 \to L_{[0,\,\varphi_1(a)]}
$$

$$
b \mapsto \alpha(a,\,b)
$$

is a bijection for any atom $a \in L_1$.

Remark 2. If $L(H)$ is the logic of all closed subspaces of the Hilbert space H (complex, separable, dim $H \ge 3$), a set of states M is quite full for $L(H)$ iff it contains all the pure states (see Dvurecenskij and Pulmannová, 1980). Let $L_1(H_1)$ and $L_2(H_2)$ be two Hilbert space logics and let us look for their tensor product. It is natural to put $\alpha(P_1, P_2) = P_1 \otimes P_2$, $P_1 \in L_1$, P_2 $\in L_2$ and $\beta(\varphi_1,\varphi_2) = \varphi_1 \otimes \varphi_2, \varphi_1 \in H_1, \varphi_2 \in H_2$. But $L(H_1 \otimes H_2)$ (as well as $L(\overline{H}_1 \otimes H_2)$ cannot be a tensor product in the sense of Definition 2, because for the normed superposition $\Sigma_c c_i \varphi_i \times \psi_i$, $\varphi_i \in H_1, \psi_i \in H_2$, the corresponding state is not contained in $\beta[M_1 \times M_2]$, so that the set $\beta[M_1 \times M_2]$ is not quite full.

It depends on the physical nature of the considered physical systems, if the coupled system can be described by a tensor product in the sense of Definition 2 (or Definition 1), or if there should be put some additional conditions (e.g., the superposition principle).

Definition 2 could give a good mathematical description of the coupling of two physical systems in the case that at last one of the systems is a classical one, as it can be seen from the following section.

5. TENSOR PRODUCT OF ONE CLASSICAL AND ONE QUANTUM LOGICS

We recall that the direct sum $\Theta_{\alpha \in I}L_{\alpha}$ of a collection $\{L_{\alpha}: \alpha \in I\}$ of logics is the Cartesian product of the sets L_{α} endowed with the coordinatewise relation \le and unary operation \perp . That is, if $j = \{j_1, j_2, ...\}$ and $k = \{k_1, k_2, ...\}$ are elements of the product, then $j = k$ (respectively, $j^{\perp} = k$) iff $j_{\alpha} \leq k_{\alpha}$ (respectively, $j_{\alpha}^{\perp} = k_{\alpha}$) for any $\alpha \in I$.

Theorem 5. Let (L, M) be a quantum logic, where L is a τ lattice (τ is a cardinal). Let (S, \mathfrak{M}) be a classical logic, where S is the algebra of all subsets of X, card $X = \tau$. Then the quantum logic (\tilde{L}, \tilde{M}) , where $\tilde{L} = \bigoplus_{x \in X} L_x, L_x = L$ for any $x \in X$, and $M = \{\delta_x \cdot m : m \in M,$ $x \in X$), where $\delta_x \cdot m(\langle a_y \rangle_y \in X) = m(a_x)$ is the tensor product of (L, M) and (S, \mathfrak{M}) in the category of τ logics.

Proof. First we show that \tilde{M} is quite full for \tilde{L} . Let $a, b \in \tilde{L}$, $a =$ $\langle a_x \rangle_{x \in X}$, $b = \langle b_x \rangle_{x \in X}$, and let

$$
\{p \in M : p(a) = 1\} \subset \{p \in M : p(b) = 1\}
$$

For $p = \delta_x \cdot m$, $x \in X$, we get $m(a_x) = 1 \Rightarrow m(b_x) = 1$, $m \in M$, i.e., $a_x \le b_x$. As this is fulfilled for any $x \in X$, we obtain $a \le b$.

Let us define the mappings α , β as follows:

$$
\alpha: L \times S \to \tilde{L}
$$

\n
$$
(a, E) \to \langle a_x \rangle_{x \in X}, \qquad a_x = \begin{cases} a & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}
$$

\n
$$
\beta: M \times \mathfrak{M} \to \tilde{M}
$$

\n
$$
(m, \mu_x) \to \delta_x \cdot m
$$

Then

$$
\beta(m,\mu_{y})(\alpha(a,E))=\delta_{y}\cdot m(\langle a_{x}\rangle)=\begin{cases}m(a) & \text{if } y\in E\\0 & \text{if } y\notin E\end{cases}
$$

i.e., $\beta(m,\mu_{v})(\alpha(a, E)) = m(a)\cdot\mu_{v}(E)$.

Clearly, $\beta[M \times \mathfrak{N}]=\tilde{M}$, and \tilde{M} is quite full for $\tilde{L} \cdot \tilde{L}$ is generated by the elements $\alpha(a,(x))$, $a \in L$, $x \in X$. Hence (L,M) is the tensor product of (L, M) and (S, \mathfrak{N}) .

A set I is said to be real measurable (or of real-measurable cardinality) if there exists a nontrivial σ -additive measure $\mu : 2^1 \rightarrow \langle 0, 1 \rangle$ which vanishes at points.

In Maňasová and Pták (1981) there is proved the following statement.

Theorem 6. Let $\{L_{\alpha}: \alpha \in I\}$ be a collection of logics, I non-realmeasurable. Let m be a state on $\Theta_{\alpha \in I}L_{\alpha}$. Then there exists a sequence $\{\alpha_n : n \in N \subset I\}$ and a partition of unity $\{p_{\alpha_n} : n \in N\}$ such that, for any $a = (a_1, a_2, ...) \in \bigoplus_{\alpha \in I} L_{\alpha}$,

$$
m(a) = m(a_1, a_2, \dots) = \sum_{n=1}^{\infty} p_{\alpha_n} m_{\alpha_n}(a_n)
$$

where m_{α} is a state of L_n .

For $N \subset M$ put $\overline{N} = \{m \in M : N(a) = 1 \Rightarrow m(a) = 1\}$, where $N(a) = 1$ means that $m(a) = 1$ for all $m \in N$ [see Gudder, 1971].

> *Theorem 7.* Let (L, M) be a quantum logic such that L is a τ lattice, τ is non-real-measurable cardinal, and let the Jauch-Piron property in τ form hold, i.e., $m(a_{\alpha}) = 1$, $\alpha \in I$, card $I = \tau$ implies that $m(\wedge_{\alpha \in I} a_{\alpha}) = 1$ for any $m \in M$. Further, let there be to any $N \subset M$ an element $a \in L$ such that $\overline{N} = \{m \in M : m(a) = 1\}$. Let (S, \mathfrak{M}) be a classical logic such that S is the algebra of all subsets of X, card $X = \tau$. Then if $(\tilde{L}, \tilde{M})_{\alpha, \beta}$ is a tensor product of (L, M) and (S, \mathfrak{R}), then $\tilde{L} = \bigoplus_{x \in X} L_x$, $\tilde{L_x} = L$, and $\tilde{M} = \{\delta_x \cdot m : x \in X, m\}$ $\in M$).

Proof. Put

$$
u_1: L \to \tilde{L}, \qquad u_2: S \to \tilde{L}
$$

$$
a \mapsto \alpha(a, X) \qquad E \mapsto \alpha(1, E)
$$

It is easy to check that u_1, u_2 are τ homomorphisms. By Theorem 2, (iii), $u_2(S) \subset \tilde{L}'$, so that $u_2(\{x\}) \in \tilde{L}'$ for any $x \in X$. Then \tilde{L} can be written in the form $\tilde{L} = \bigoplus_{x \in X} \tilde{L}_{[0, u_2(\{x\})]}$. It can be shown as in the proof of Theorem 4, that the set $\beta[M \times \mu_x]$ is quite full for $L_{[0, u_2(\lbrace x \rbrace)]}$. Put

$$
u_{1,x}: L \to \tilde{L}_{[0, u_2(\{x\})]}
$$

$$
a \mapsto \alpha(a, \{x\})
$$

We show that $u_{1,x}$ is surjective. Let $c \in \tilde{L}_{[0, u_2(\{x\})]}$. Let us set

$$
N = \{m \in M : \beta(m, \mu_x)(c) = 1\}
$$

If $a \in L$ is the element such that $N = \{m \in M : m(a) = 1\}$, then $\{p \in [M \times N] \}$ μ_x : $p(c) = 1$ = { $p \in \beta[M \times \mu_x]$: $p(\alpha(a, \{x\})) = 1$ }, i.e., $c = \alpha(a, \{x\}) = 1$ $u_{1, x}(a)$.

Thus we have shown that $\tilde{L} = \bigoplus_{x \in X} L_x, L_x = L, x \in X$. By Theorem 6, any state $p \in \beta[M \times \mathfrak{M}]$ is of the form $p = \sum_{n=1}^{\infty} p_{\alpha_n} m_{\alpha_n}$. From $\beta(m, \mu_v)(\alpha(a, E)) = m(a)\mu_v(E)$ it follows that $\beta(m, \mu_v) = \delta_v \cdot m$.

The representation of a tensor product in the form of the direct sum of copies of L indexed by X might be appropriate for describing quantum measurements; any of the copies L_x of L would correspond to some position on the scale of the measurement apparatus.

REFERENCES

- Aerts, D. (1979). Description of compound physical system and logical interaction of physical systems, in Proceedings of the Workshop of Quantum Logic, Erice, Italy.
- Aerts, D. and Daubechies, I. (1978). Physical justification for using the tensor product to describe two quantum systems as a one joint system. Preprint, Theoretische Natuurkunde, VUB, Brusśels.

Gudder, S. P. (1968). *Journal of Mathematics and Mechanics,* 18, 325.

Gudder, S. P. (1970). *Journal of Mathematical Physics (N.* Y.), II, 1037.

Dvurečenskij, A., and Pulmannova, S. (1980). *Mathematica Slovaca*, 30, 393.

Mañasova, V., and Ptak, P. (1981). *International Journal of Theoretical Physics*, 20, 451.

Matolcsi, T. (1975). *A cta Scientiarum Mathematicarum Universitatis Szegediensis,* 37, 263.

Varadarajan, V. S. (1968). *Geometry of Quantum Theory*. Van Nostrand, Princeton, New Jersey. Zecca, A. (1978). *Journal of Mathematical Physics (N. Y).,* 19, 1482.

Zecca, A. (1979). A product of logics in Proceedings of the Workshop on Quantum Logic, Erice, Italy.