
International Journal of Theoretical Physics. Vol. 22, No. 9, 1983 

Coupling of Quantum Logics 

S. Pulmannowt 

Mathematical Institute of the Slovak Academv of Sciences, 814 73 Bratislava, 
Czechoslovakia 

Received April 15, 1982 

A quantum logic is a couple (L,  M), where L is a logic and M is a quite full set 
of states on L. A tensor product in the category of quantum logics is defined and 
a comparison with the definition of free orthodistributive product of orthomodu- 
lar o lattices is given. Several physically important cases are treated. 

1. INTRODUCTION 

The problem of coupling of logics was treated by several authors 
(Aerts, 1979; Aerts and Daubechies, 1978; Matolcsi, 1975; Zecca, 1978, 
1979). It is supposed that the logic L of a physical system S, which is 
composed of two physical systems S I and S 2 with the logics L~ and L2, 
respectively, is a kind of tensor product (or free orthodistributive product) 
of the logics L~ and L 2. Essentially, only the case in which the logics were 
complete and atomistic orthomodular lattices was treated. In the category of 
Hilbert space logics, there was shown (Matolcsi, 1975; Aerts and Daubechies, 
1978) that there are two tensor products of the logics L t (HI)  and L2(H2), 
namely, L(HI| i.e., the logic of the tensor product HI| 2, and 
L(Ht| i.e., the logic of the tensor product HI| 2, where H 1 is the 
dual of H I. [The case of real or complex separable Hilbert spaces of the 
dimension at least three was considered. In the case of complex Hilbert 
spaces the tensor products L ( H i | H 2) and L ( H  t | n 2) are not equivalent.] 

The definition of a tensor product (or free orthodistributive product) of 
orthomodular o lattices was proposed by Matolcsi (1975) in the following 
form. 

Definition 1. Let La(i ~ I )  and L be orthomodular o lattices. Then 
( L, ( u i )~ ~ i) is a tensor product (or free orthodistributive product) of the L~ s 
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if (i) ui : L~ ---, L are orthoinjections (i ~ I) ,  (ii) U i~ t u~ ( L i) generates L, (iii) 
for every finite or countable subset F of I, t.) ~ Fui(a~) = 0 for a, ~ Li if 
and only if at least one a i is zero, and (iv) u~(a~) is compatible with u j ( a j )  
for all i, j ~ I such that i * j .  

2. TENSOR PRODUCT OF QUANTUM LOGICS 

In this paper, we shall call a "quantum logic" the pair (L,  M), where L 
is an orthomodular o lattice (we shall call it a logic) and M is a set of states 
which is quite full for L, i.e., 

( r n ~ M : m ( a ) = l ) c { m ~ M : r n ( b ) = l )  implies a = b 

( a , b ~ L )  (1) 

We shall further suppose that the Jauch-Piron condition in the countable 
form is satisfied, i.e., 

m ( a ~ ) = l  f o r a l l i = l , 2  . . . .  impliesm A a~ =1 ( m ~ M )  (2) 
i=1 

Basic facts on logics and states can be found in 'Varadarajan (1968). 
We shall give a definition of the tensor product in the category of 

quantum logics. The definition is given for two quantum logics (L  t, M~ ) 
and (L  2, M 2), but it can be in a natural way generalized to any ~et (L,,  34, ), 
i ~ I .  

Def ini t ion 2. Let ( L  t , M l ), ( L  2, M 2 ), ( L ,  M ) be quantum logics. We say 
that (L,  M)  is a tensor product of (Lj ,  Ml) and (L  2, M2) if there are 
mappings a,/3 such that: 

(i) a : L ~ X L  2 ~ L ,  /3: M t • M z ~ M ,  

/3(ml, m z ) ( a ( a l ,  a2) ) = r n l ( a l ) m z ( a 2 )  

for any m i ~ M,, a i ~ Li, i = 1,2. Here LI x L 2 and M I • M 2 are the direct 
products. 

(ii) /3[M I X M2] = (/3(m I, m2): m I ~ MI, m 2 ~ M2) is quite full for L. 
(iii) L is generated by a [ L  l x L2], i.e., the smallest sublogic of L 

containing all a( a I, a2), a I ~ L I, a z ~ L 2, is L. 
We shall denote the product by (L,  M),.t~. 



Coupling of Quantum Logics 839 

Let LI, L 2 be or thomodular  0 lattices. A map q~: L I - * L  2 is a 0 
o r thohomomorph i sm if (i) + ( 1 ) = 1 ,  (ii) ~ k ( v ~ = t a i ) =  v~~ for any 
sequence (ai) c L1, (iii) ~ ( a  • ) = q,(a)  • a ~ Lt .  

A 0 o r thohomomorph i sm is called orthoinjection if it is one-to-one. A o 
o r thohomomorph i sm which is one- to-one and onto  is a bijection. 

Proposition 1. Let us define 

qot: L I ~ L,  cp2: L 2 ~ L 

a I ~ a ( a  1,1) a 2 ~ a ( 1 , a 2 )  

Then ~l,  rP2 are orthoinjections. 

Proof From f l (m t, m2)(a(1,  1)) = rnl(1)m2(1) = 1 for all m I ~ M I, m 2 
E 342, and from the fact that  fl[M~ • M2] is quite full for L,  we obtain that 
a(1, 1) = 1. (We write 1 for the greatest element in any of  L~, L 2, L).  F rom 
this we have that q0,(l) = 1, qo2(1 ) = 1. Further,  

f l (m, , rn2)(c t (a , •177 )m2(1) 

= mr(a, • = 1 -  m r ( a , )  = ( 1 -  mt(at))m2(1 ) 

= 1 -  m t ( a , ) m l ( 1  ) = 1 -  f l ( m , ,  m z ) ( a ( a  ,, 1)) 

=fl(m,,rn2)(ot(a,,1) • 

for all m I ~ M t, m z ~ M z, which implies that tpt(a I" ) = qot(al) • . Similarly, 
qo2(az•  • N o w  let (alk)~=l be any sequence in L, .  F rom the 
J a u c h - P i r o n  proper ty  (1) we get fl(rn I, m2)(a(/xkaj k, 1))= 1 iff ml(/Xkal k) 
= 1 iff ml(al k) = 1 for all k iff fl(m l,mz)(Aka(al k,1)) =1 for any m I 
M I, m 2 ~ M 2, which implies that a(Akal k, 1 ) =  Aka(al  k, 1), i.e., qol(Akal k) 
= /X ,qol(al*). By the duality we obtain that qo~(Vkal ~) = V,qol(alk), SO that 
qo t is a 0 o r t h o h o m o m o r p h i s m .  The same holds for qo 2. N o w  
fl(m I,m2)(a(a 1,1))=fl(m I,m2)(a(al',l)) for all m I ~ M  l,m z ~ M  z im- 
plies that rn l (a t )  = mt(a~') for all rn t ~ M t, so that a t = at ' .  F rom this we 
see that ~l and 9)2 are injections. �9 

Proposition 2. For  any a I E L t and a z ~ L 2, q~t(al) is compat ible  with 

qo2(a2). 
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Proof. For  any m I ~ M l, m 2 ~ M 2, 

~ ( m , , m 2 ) ( a ( a , , l ) A a ( l , a 2 ) ) = l  iff t ~ ( m , , m 2 ) ( a ( a , , 1 ) ) = l ,  

~ ( m l , m 2 ) ( a ( 1 , a 2 ) ) = l  i f f m l ( a t ) = l , m 2 ( a 2 ) = l  iff 

~(m~, m2)(a(a, ,  a2) ) = 1 

which implies that a(a I, 1)A a(1, a2) = a(a I, a2). N o w  

~ ( m , , m 2 ) ( a ( a , , l ) A a ( l , a 2 ) ) = l  i f f ~ ( m , , m 2 ) ( a ( a , , l ) ) = l ,  

~ ( m , , m 2 ) ( a ( 1 , a 2 )  )=1 i f f m , ( a l ) = l , m z ( a 2 ) = l i f f  

~ (m, ,  m2)( a( a,, a2) ) = 1 

for any m I ~ ml ,  m 2 ~ M 2, implies that qol(al) and (P2(a2) are independent  
(in the probabilistic sense) in all states of  fl[M I • m2]. This implies, in 
particular, that qol(at) and ~2(a2)  are compat ible  (see Gudder ,  1968). �9 

Theorem 1. Let (L ,  M)~,.t~ be the tensor p roduc t  of  (L  l, Mr) and 
( L  2, M2) in the sense o f  Definit ion 2. If  we put  

qJl: Lt---) L, ~P2: L2---)'L 

a I ~ ot(al, 1) a2 ~--~ a ( l ,  a2) 

then (L ,  qol, qo2) is the tensor product  of  L I and L 2 in the sense of  
Definit ion 1. 

Proof (i) Evidently, ul(Li)k3u2(L2)c [Ul(Li)kJu2(L2)]"c L"=  L. 
On the other  hand, [ u l ( L l ) U  uz(L2)]"  is an o r thomodula r  sub-o-lattice of  
L,  conta ining both ul(Li)  and uz(L2). As L is generated by ul(Li)  and 
u2(L2),  we obtain that [ u l ( L l ) U  u2(L2) ]"=  L. 

TO prove (i), let qol(al)A qo2(a2) = 0 and a I ~* 0. As qol(al)A q02(a2) = 
a ( a l ,  a2), we get f rom fl(m I, m2)(qol(al)A c~2(a2) ) = 0 for any m I ~ M l, m 2 

M 2, that ml(al)m2(a2) = 0 for any m I ~ M I, m 2 ~ m 2. Let ml ~ ~ M I be 
such that ml~ = 1. (Such ml ~ exists because M 1 is quite full for L l and 
a I #: 0.) Then  ml~ 0 for any m 2 ~ M 2 implies that m z ( a 2 )  = 0 
for any m 2 ~ M 2, i.e., a 2 = 0. 

(ii) By Definit ion 2 (iii), L is generated by alL l x L2]. As for any 
a I ~ L I, a 2 ~ L 2, a(a 1, a2) = qol(al)A qo2(a2), we see that qol(L 1 )U ~z(Lz) 
generates L. �9 
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3. S O M E  PROPERTIES OF THE T E N S O R  P R O D U C T  

Let (L ,  u l, u2) be the free or thodis t r ibut ive  produc t  of L 1 and L 2 in the 
sense of  Defini t ion 1. For  a subset  M of an o r thomodu la r  lattice K put  
M '  = (a  ~ K:  a ~ b for any b ~ M) .  (We write a ~ b if a is compat ib le  with 
b.) The  set K '  is the center  of K. We shall s tudy the relat ions between the 
centers Ll ' ,  L2', and L' .  We shall need the following lemma.  

Lemma 1.A. o h o m o m o r p h i s m  u: LI ~ L 2 between two o r thomod-  
ular o lattices L I, L 2 is injective iff u(a) = 0 implies a = 0 ( a  ~ Li) .  

Proof. Let u(a)= 0 imply a = 0 and  let u(a)<~ u(b), a, b ~ L I. Then  
u ( a ) -  u(.a A b) = 0 implies u(a - a /x  b) = 0 and this implies a - a A b --- 0, 
i.e., a = a /x  b. Hence,  u(a) <~ u(b) implies a < b. F r o m  this it follows that  u 
is injective. The  converse  impl icat ion is clear. �9 

Theorem 2. Let (L ,  u t, u2) be the free or thodis t r ibut ive  produc t  of  
L~ and L 2 in the sense of  Defini t ion 1. Then the following hold: 

(i) [ u , ( L , ) U u 2 ( L z ) ] " = L  

(ii) [ u , ( L I ) A  u:(L:)]n [u,(L,)A u:(L2)]'= u,(L,')^ u:(L2') 

where K I A K  2 = ( a A b : a ~ K  l , b ~ K 2 ) ,  K I and K 2 are any 
lattices, and 

(iii) [u , (L , ' )Uuz (L2 ' ) ] "=  L' 

Proof. (i) Evidently,  ul( Ll)t.) u2( L2) c [ u l ( L l ) U  uz( L2)]"cL"= L. On 
the other  hand,  [ u l ( L l ) U  uz(L2)]"  is an o r thomodu la r  sub-o-lat t ice of  L, 
containing both  ul(Li)  and u2(L2). AS L is generated by  ul(Li)  and 
u2( L2 ), we obtain  that [ u t ( L i ) U  uz( Lz)] ' '= L. 

(ii) As a ~ b, a, b ~ L t, implies ul(a ) ~ ul(b ) in L, we have ut(Ll '  ) c 
ut(Li) ' .  By Defini t ion 1 (iv), u2(L2)C uI(LI)' and u l ( L i ) c  uz(L2)'. Evi- 
dently, u l ( L ( ) c  ul(Li).  Now if a ~ u l ( L ( ) A  u2(L2')  is of  the form a = 
u l ( a l ) A  uz(a2) ,  then u l ( a l ) ~  ul (Li)  [i.e., u l ( a l ) ~  ul(bl) for any b I ~ Li ]  
and u,(al) ~ uz(Lz), f rom which it follows that  ul(al) ~ u l ( L l ) A  uz(L2).  
Similarly, u 2 ( a z ) o u l ( L t ) A u z ( L 2 ) .  From this it follows that  u l ( a l ) A  
u2(a2)  E [ u l ( L I ) A  u2(L2)] ' .  Hence  u I ( L I ' ) A  uz(L2' ) c [ u I ( L I ) A  u2(L2) ]' 
(~ u I ( L I ) A  uz(L2). 

On the other hand,  let a ~ [ u l ( L i ) A  uz (L2) ] 'O  u I ( L I ) A  uz(L2)  be of 
the form a = u l ( a l ) A  uz(a2)  (a  1 ~ L I , a  2 ~ L2). We have a ~, u~(LI )A 
u2(L2),  especially a ~ ul( bl) for all b I ~ L t and a ~ uz( b2) for all b 2 ~ L z. 
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Thus 

u l ( b l )  = [ u l ( a l ) A  uE(a2)  ] A  u l ( b t ) V  [ u l ( a l ) A  u 2 ( a z )  ] • A u l ( b l )  

: [ . , ( a , ) ^  ^ . , ( b , ) v  [u , (a , ) "  v 

and 

ui(bl)A u2(a2) = ui(al)A u2(a2)A ui(bl)v [ui(ai) • V u2(a2) .L] 

^ , ,~( ,~)^ ,,,(b,) 

= ,,,(a, ^ b, )^ ~,~(,~) v ,,,(a, ~ ^ b, )^  ,,~(,,~) 

= u,(a, ^ b, v a, 1 ^ b,)^, ,~(a~).  (3) 

N o w  let us consider the map 

/,/i,a2: L I --~ L 

a I ~. u l ( a l )A  u2(a2)  

where 0 * a 2 ~ L 2 is fixed. As u l (a t )  ~ u2(a2)  for all a I ~ Ll ,  u l . . .  ~ is a 0 
o r thohomomorph i sm from L l into Lto,.2~,._) 1= (b ~ L :  b ~< u2(a2)  ). By 
Lemma 1, ut,~2 is injective. F rom this it follows that (3) implies that 
b~ = a~ A b I v a~" A b~ for any b I ~ L I, hence al ~ L~'. Similarly, a 2 ~ L2'. 
Thus we have shown that 

[ . , ( L , ) ^  u~(L~)] 'n  u , ( L , ) ^  u~(L~) ___ . , (L ' , )  ^ .~(L~) 

(iii) For  any A, B c L we have (A N B ) ' D  ( A ' U  B')" .  By (ii) we get 

[u, (L' , )^ u~(L~)]' = ( . , ( L , ) ^  .~ (L~)n  [u , (L , )^  ~ (L~ ) ] ' ) '  

D ( [ u I ( L I ) A U 2 ( L 2 ) ] ' U [ u I ( L I ) A u 2 ( L 2 ) ] " ) "  

As u l ( L i ) C  u I ( L I ) A  UE(L2) , u 2 ( L 2 ) c  u I ( L I ) A  u2(L2)  , we have 

[.,(L,) u u2( L2)]" c [u,( L,)^ .~( L2)]" 

On the other hand, as a ~, b I, a ~ b 2 imply a ~ b I A b z, a, b l, b E ~ L,  we 
get 

[u,(L,)uu2(L2)] 'c  [u,(L,)A u2(L2)]' 
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i.e., 
[u,(L,)u [u,(L,)^ 

Hence  

( [ u , ( t ~ � 9 1  u~( t~z) ] 'U [ u , ( L , ) ^  u ~ ( L ~ ) ] " ) "  

_ [ u , ( L , ) ^  u 2 ( L 2 ) ] " =  [ u , ( L , ) u  u 2 ( L ~ ) ] "  

by (i). Thus 

[ u , ( L ' , ) ^  = I-. 

= L  

Taking the commutan t  once again we obtain 

[ u , ( L , ' ) A  u 2 ( L ; ) ] " =  L' .  

Corollary 1. Let (L ,  u I, u2) be the product  of Lj ,  L 2. Then L is 
irreducible only if L I and L 2 are irreducible. 

Proof If L is irreducible, then L ' =  (0, 1). By Theorem 2, (iii) ul(L~') c 
L',  u 2 ( L 2 '  ) c L', which implies that L '  I = L '  2 = (0,  l ) .  �9 

Corollary 2. The tensor product  (L ,  u I, u 2) is distributive iff t t and 
L 2 are distributive. 

Proof Let L j and L 2 be distributive, i.e., L i = L~, i = 1,2. F rom Theo-  
rem 2, (iii) we get ul( Ll ' )= ul( L~) c L', u2( L2' ) = u2( L2 ) c L'. As ul( Li ) 
and u2(L2)  generate L, we get L ' =  L. From this it follows that L is 
distributive. If L is distributive, then L = L'.  For  i = 1,2, u i ( L ~ ) c  L = L '  
implies ui(Li) c u i (Li ) 'n  ui(Li) = ui(Li'), i.e., ui(L i) = u i ( L i ' ) ,  which im- 
plies that L i = L: .  �9 

Let (L,  uj,u2) be a product  of L t and L 2. For  any 0 : ~ a 2 ~ L  2 
( 0 : ~ a  I e L i )  the maps ul.,,.~t,.,,,~ defined by Ul.u , (a l )=ul(a~)A 
u2(a2)[uz.~,(a2) = u t ( a l )A  u2(a2)  ] are injective [see prooi  ~ of Theorem 2, 
(ii)]. 

Corollary 3. Let L I, L 2 be irreducible o r thomodula r  o lattices and 
(L,u~,u2) be their product .  To  any c E L ' ,  c :~0 ,1 ,  let there be 
b 2 E L  2 (or b L E L l )  such that Uj.b2 (or u2.b,) is surjective and 
C A u 2 ( b 2 ) ~  u2(b2),0 (or c A U l ( b t ) ~  u t (b l ) , 0  ). Then  L is irre- 
ducible. 

Proof Let c ~ L', c ~ 0, 1. The map ul,l,~ is injective and surjective, i.e., 
it is a bijection. Let  c I ~ L  l be such that Ul.h,(Cl)=C/X u2(b2). Then 
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Ul.t,,(Cl) ~, Ul,b2(Ll) implies c I ~ L I, c 1 * 0, 1, a contradic t ion with the irre- 
ducibili ty of  L I. �9 

Remark 1. The s ta tements  of  Theorem 2 are similar to that  proved in 
Zecca (1968) by another  definit ion of the tensor product .  

Example 1. Let (X,  S)  be a measurable  space, where S is a o algebra of 
subsets of X, and let %3]~ be a set of  probabi l i ty  measures  on S containing all 
measures  ~,. concent ra ted  on the points  x ~ X. Evidently,  ~.31~. is quite full for 
S, and the J a u c h - P i r o n  p roper ty  in the countable  form is fulfilled. A 
quan t um logic (S, .6~qL) of  the type just  described is called a classical logic 
(Gudder ,  1970). Let (S i, 6 ~ ) ,  i =  1,2, be two classical logics, where S, is a o 
algebra of  subsets of  a space Xa, i = 1,2. Let S be the produc t  o algebra on 
X~ x X 2. The  set of  all p roduc t  measures/~.~ x/%., x ~ X~, y ~ X 2, is quite 
full for S. Let us set 

a:S l  x S2--, S 

E x F ~ E x F,  i .e. ,  a is the identi ty map  

B: " ~  i x ~rC2 -~ 9~t 

(t~l, tL2) ~ tq x ~2 

where ~ = (it ,  x #2 : / ~  ~ ~-~lt I, %~2 ~ ~-~ 2)" Then  

~(~I , / I ,2 ) (o r  2)) =bl, i X/.t 2 (E  I X E 2) = / . t l (E  I)bl,2(E 2) 

and it can be easily checked that  ( S , ~ K ) a . a  is the tensor p roduc t  of 
(S  l, ~_~ j) and (S  2, ~'_3~2) in the sense of  Defini t ion 2. 

Example 2. Let us consider  the case in which ( L  I, M I) is a quan tum 
logic and ( L  2, M2) is a classical logic. This case is impor tan t  f rom the 
physical  point  of  view: it describes measurements  of  q u a n t u m  observables  
by classical measurement  devices. Let us set 

~ :  L l --* L, ~2:L2 ~ L 

a ~ a ( a ,  1) b ~ a(1, b) 

where (L ,  M)~ . a  is the tensor p roduc t  of  (L~, M i), i = 1,2. By T h e o r e m  2, 
(iii), cp2 (L2)=cp2 (L2 ' ) c  L' ,  where L' is the center  of  L. If  (bi)~= L is any 
par t i t ion  of identi ty in L 2, then (r i is the par t i t ion of identi ty in L' .  
Then  L can be writ ten as a direct sum L = ~~ I Lto.w2tb,~l, and the logics 
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Llo.w2(b,)l are irreducible iff ~2(bi), i = 1,2 . . . .  are a toms in L' .  If  the maps 

cp2.h : L I + L 

a ~ q0,(a)A e&(bi)  

are surjective, then the logics Llo.qo2(b,) 1 are isomorphic with L~, so that L 
can be written as the direct sum of the copies of L I indexed by the set 

( bi )i~ I" 

4. T E N S O R  P R O D U C T  O F  C O M P L E T E  A T O M I S T I C  
L A T T I C E S  

We shall consider quan tum logics (L ,  M), where L is a complete 
atomistic lattice and M is a set of  pure states such that to any a tom e ~ L 
there is exactly one state p ~ M for which p ( e )  = 1. F rom the J auch -P i ron  
proper ty  we get that for any p ~ M, ( a :  p ( a ) = l ) =  ( a :  e ~< a), where e is 
the a tom such that p ( e )  = 1. The J a u c h - P i r o n  proper ty  is then fulfilled not 
only for countable  sets, but  for any sets. Clearly, M is quite full for L. 

Theorem 3. Let ( L  i, Mi ) and ( L 2, M 2 ) be two quan tum logics such 
that L t and L 2 are complete atomistic o r thomodular  lattices and 
Mj and M 2 are sets of pure states such that to any a tom e D ~ L t 
(e 2 ~ L2) there is exactly one state Pl ~ Mt (P2 ~ 3//2) such that 
p l ( e l ) = l  [p2(e2) = 1]. Let ~: L I --, L z and /3: M I ~ M 2 be map- 
pings such that 

(i) / 3 ( m ) ( a ( a ) ) = m ( a )  f o r a l l a ~ L , , m ~ M  I 

(ii) /3 is onto 

Then ct and /3  are bijections. 

Proof. Let /3(ml) = /3 (m2) ,  then / 3 (m t ) (a (a )  ) = / 3 ( m 2 ) ( a ( a ) )  for any 
a ~ L l ~  m l ( a ) = m 2 ( a )  for any a ~ L ~ .  Hence m l = m  2. Thus  /3 is 
one-to-one.  

Now / 3 ( m ) ( a ( a •  )) = m ( a  l )  = 1 - re (a )  = 1 - / 3 ( m ) ( a ( a ) )  = / 3 ( m )  
( a ( a )  •  for all f l ( m ) E  M2, and as / 3 [MI ]=  M 2 and M 2 is quite full, we 
have a ( a  • ) = a ( a )  • 

F rom the J a u c h - P i r o n  proper ty  we obtain that for any index set I, 
/3(m)(/x  i~ la (a i ) )  = 1 ,~ /3(m)(c t (a i ) )  = 1 for all i ~ I ~ m ( a i )  = 1 for all 
i ~ I , = * m ( A i ~ t a i ) = l ~ / 3 ( m ) ( a ( A ~ 1 a i ) ) = l  for / 3 ( m ) ~ M  2, hence 

ot( A i ~ i a i )  = A iElot(ai).  
From /3(m)(et (1))= m ( 1 ) = l  for all /3(m) we get a ( 1 ) = l .  Thus  we 

have shown that et is an o r thohomomorphism.  
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If a ( a ) =  a ( b ) ,  then f l ( m ) ( a ( a ) ) = f l ( m ) ( c t ( b ) )  impl ies  m ( a ) =  m ( b )  
for all m ~ M~, so that  a = b. Hence  a is one- to-one.  

Let  A i c L i be the set of  all a toms  in L i, i = 1,2. Let  si: M i ~ A i, i = 1,2 
be  such that  m i ( s ~ ( m i ) ) = l .  Let a ~ A,.  If  a(a)r A2, then there are 

e l , e 2 E A 2 ,  el,e2<~ot(a).  Let q l = s 2 - 1 ( e l ) , q 2 = s 2 - 1 ( e 2 )  and let ql = 

f l (P l ) ,q2  = f l (P2) ,  Pl ,  P2 ~ Mi.  Then q l ( a ( a ) ) =  q2(a(a))  = 1 impl ies  p l ( a )  
= p 2 ( a ) = l ,  bu t  this implies  that  p l = p 2  . Hence  e l = S z O f l ( p l )  = 
s 2 o f l ( p 2 ) = e 2 ,  i.e., a ( a ) ~ A  2. F o r  p ~ M  I, p ( s ~ ( p ) ) = l  impl ies  that  
f l ( p ) ( a ( s ~ ( p ) ) ) =  1, i.e., s 2 0/3 = a o s  v Let aA, be a res t r ic ted  to A I. Then 

a~, :  A I ~ A 2 and aA, = S 2 o/3 oS 1-1. AS s I , s  2 and fl are  bi ject ions ,  aA, is 
also a bi ject ion.  

Let c ~  L 2. Then  c =  v ( c i :  c i ~ h2,  c i <~ c) = v{ct,,t,(otA I(ci)  : c i <~ c) = 
a ( ( v  a A - I ( c i ) :  c i ~< c)), i.e., a is onto.  W e  have shown that  a is an i somor-  
phism.  �9 

Theorem 4. Let ( L  I, Mi) ,  ( L  2, M2), and  ( L ,  M )  be q u a n t u m  logics 
with the p roper t i e s  descr ibed  in Theorem 3. Let  ( L ,  M)~.O be the 

tensor  p roduc t  of  ( L  l, M I) and  ( L  2, M 2). Then  the maps  

qo2.h : Li  ~ Llo.~2~b) 1 

a ~ a ( a , b )  

are bi jec t ions  for any a tom b ~ L 2. 

Proof. Let us cons ider  the maps  

q~2. b: LI ~ Llo.~,(h)l 

and  

a ~ a ( a , b )  

flq: M, ~ fl[ M, • ( q)] 

P ~ f l ( P , q )  

where  q E M z is such that  q(b)  = 1. Let  c I, c z ~ Lio.~0,~l,)]. F r o m  the fact that  
r i M  I • 342] is qui te  full, we ob ta in  

/3(mr ,  m 2 ) ( c  ,)  = 1 = / 3 ( m , ,  m2) (c2 )  = 1 implies  c, ~< c 2 

But cl,  c 2 ~< q92(b), so that  

/ 3 ( m , , m 2 ) ( c , )  = 1 ~ ( m , ,  m z ) (  CP2( b ) ) = 1 
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i.e., (m I, m2)(a(1,  b)) = 1, hence m2(b  ) = 1. As b is an atom, m 2 = q. From 
this we see that 

f l (  m l ,  q )( c, ) = 1 ~ f l (  m,  , q )( c2) = 1 implies c I <~ c z 

i.e., the set f l [ M  I x(q) ]  is quite full for Lt0,,2tb) 1. As the map flq: M l --* 
f l [ M  l • (q)] is onto, it follows from Theorem 3 that ~02, b is a bijection. �9 

Corollary 4. The map 

~Pl,a: L2 --' L[0,~,(a)] 

b ~ a ( a , b )  

is a bijection for any atom a ~ L I. 

Remark  2. If L ( H )  is the logic of all closed subspaces of the Hilbert 
space H (complex, separable, d i m H  > 3), a set of states M is quite full for 
L ( H )  iff it contains all the pure states (see Dvurek, enskij and PulmannovK 
1980). Let L I ( H I )  and L2(H2) be two Hilbert space logics and let us look 
for their tensor product. It is natural to put a( P n, t'2) = PI| PI ~ LI ,  P2 

L..Zz and fl(cpt,cp2) = 9~i| ~Pn ~ HI, cP2 ~ H2- But L ( H I |  (as well as 
L ( H  I | H 2)) cannot be a tensor product in the sense of Definition 2, because 
for the normed superposition E~cdp ~ x q,~, cp, ~ HI, q,~ ~ H2, the correspond- 
ing state is not contained in f l [ M  I x M2], so that the set f l [ M  l • 3,/2] is not 
quite full. 

It depends on the physical nature of the considered physical systems, if 
the coupled system can be described by a tensor product in the sense of 
Definition 2 (or Definition 1), or if there should be put some additional 
conditions (e.g., the superposition principle). 

Definition 2 could give a good mathematical  description of the cou- 
pling of two physical systems in the case that at last one of the systems is a 
classical one, as it can be seen from the following section. 

5. T E N S O R  P R O D U C T  OF O N E  CLASSICAL 
AND ONE Q U A N T U M  L O G I C S  

We recall that the direct sum ~ t L ~  of a collection (L~: a ~  I )  of 
logics is the Cartesian product of the sets L~ endowed with the coordinate- 
wise relation ~< and unary operation •  That  is, if j =  (Jr, J2 . . . .  ) and 
k = ( k  I, k 2 . . . .  ) are elements of the product, t hen j  = k (respectively,j  • = k)  
iffj~ ~< k~ (respectively, j ~  = k~) for any a ~ I. 
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Theorem 5. Let (L ,  M )  be a q u a n t u m  logic, where L is a ~- lattice (~- 
is a cardinal).  Let (S,  ~ be a classical logic, where S is the algebra 
of  all subsets of  X, card X = r. Then  the q u a n t u m  logic (L ,  M) ,  
where L = ~ ~ xL~, L x = L for any x ~ X, and M = (Sx. m : m ~ M, 
x ~ X ) ,  where 8 x . m ( ( a , , ) v ~ x ) = m ( a ~ )  is the tensor p roduc t  of  
(L ,  M )  and  (S, ~ )  in the category of r logics. 

Proof. First we show that  if/ is quite full for L. Let a,  b ~ L,  a = 
(a~)x ~ x, b = (bx) x ~ x, and let 

(p M. = 1) c (p M: p(b)=l) 

F o r p  = 8~.m, x e X, we get m(ax)  = 1 ~ m(h~) = 1, m e M, i.e., a~ ~ b~. As 
this is fulfilled for any x ~ X, we obta in  a ~< b. 

Let us define the mappings  a,/3 as follows: 

a : L x S - - , L  

a i f x ~ E  
( a ' E ) ~ ( a x ) ~ x '  a x =  0 i f x q ~ E  

/3: M X 91L ~ BT/ 

( m , t i x )  ~ 8~'m 
Then  

m ( a ) ,  i f y ~ E  
B ( m ' l [ v ) ( a ( a ' E ) ) = 8 ~ " m ( ( a x ) ) =  0 i f y ~ E  

i.e., f l (m, /zv) (a(a ,  E))  = m(a)-# , , (E) .  
Clearly, f i l M  • 9E]  = M, and M is quite full for L.L is generated by 

the elements a(a, (x) ) ,  a ~ L, x ~ X. Hence  ( L , / f / )  is the tensor p roduc t  of  
(L ,  M )  and (S, r �9 

A set I is said to be real measurab le  (or of  rea l -measurable  cardinali ty)  
if there exists a nontrivial  o-addit ive measure  ~ : 21 --* (0, 1 ) which vanishes 
at points.  

In Mafiasovh and Pthk (1981) there is proved the following s ta tement .  

Theorem 6. Let (L~:  t~ e I )  be  a collection of logics, I non-real-  
measurable .  Let m be a state on ~ t L ~ .  Then  there exists a 
sequence (a,, :  n ~ N c I )  and a par t i t ion of unity (p~,: n ~ N )  
such that, for any a = (a  l, a 2 . . . .  ) ~ ~ IL~, 

oo  

m ( a ) = m ( a t , a 2  . . . .  ) =  E P~,m~,,(an) 
t lm[  

where m~, is a state of  L,,. 
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For  N c M put  N =  (m �9 M :  N ( a ) =  1 ~ m ( a ) =  1), where N ( a ) =  1 
means that rn(a)  = 1 for all m �9 N [see Gudder ,  1971]. 

Theorem 7. Let (L ,  M )  be a quan tum logic such that L is a ~- 
lattice, ~ is non-real-measurable cardinal,  and let the J a u c h - P i r o n  
proper ty  in ~" form hold, i.e., m ( a ~ ) =  1, a �9 1, card I = ~" implies 
that m ( A  ~ t a ~ ) = l  for any m � 9  M. Further,  let there be to any 
N c M an element a �9 L such that N =  (m �9 M :  r e ( a ) =  1). Let 
(S, 6'AL) be a classical logic such that S is the algebra of all subsets 
of  X, card X = ~'. Then if (L ,  ~r)~. a is a tensor product  of  (L ,  M )  
and (S, ~ then L = ~ x ~ x L ~ ,  Lx = L,  and M =  (6~.m : x �9 X, m 
� 9  

Proof. Put 

u~: L--, L, u2: S--, L 

a ~ a(a,  X )  E ~ a(1, E )  

It is easy to check that ul, u 2 are ~" homomorphisms.  By Theorem 2, (iii), 
u z ( S  ) c L' ,  so that u2((x))  �9 L '  for any x �9 X. Then L can be written in the 
form L = ~)x~ xLto,,,((x))l . It can be shown as in the proof  of Theorem 4, 
that  the set f l [ M  • I~,,) is quite full for Lto, u:(<.,.>~ 1. Put 

Ul,x: L ~ Lto, u2((x)) 1 

We show that ut, ~ is surjective. Let c �9 Llo.u2ttx)) 1. Let us set 

N =  ( m  �9 M :  f l ( m , / t x ) ( c  ) = 1) 

If  a �9 L is the element such that N = (m  �9 M :  re (a)  = 1), then ( p  �9 [ M  • 
t~x]: p ( c )  = 1) = ( p  �9 [3[M • p.y]: p ( a ( a , ( x ) ) )  = 1), i.e., c = a ( a , ( x ) )  = 
ul,x(a). 

Thus we have shown that L = ~ .  ~ xLx ,  L x = L,  x �9 X. By Theorem 6, 
any state p � 9  • 6"JIL] is of  the form p =~,, ,~ From 
fl ( m,  p.v )( Ct( a, E ) ) = m(  a )tiy ( E ) it follows that fl( m,  li v ) = 8v. m. �9 

The representat ion of  a tensor p roduc t  in the form of the direct sum of 
copies of L indexed by X might be appropr ia te  for describing quan tum 
measurements;  any of  the copies L x of  L would correspond to some posit ion 
on the scale of  the measurement  apparatus.  
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