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A quantum logic is a couple (L, M), where L is a logic and M is a quite full set
of states on L. A tensor product in the category of quantum logics is defined and
a comparison with the definition of free orthodistributive product of orthomodu-
lar ¢ lattices is given. Several physically important cases are treated.

1. INTRODUCTION

The problem of coupling of logics was treated by several authors
(Aerts, 1979; Aerts and Daubechies, 1978; Matolcsi, 1975; Zecca, 1978,
1979). It is supposed that the logic L of a physical system S, which is
composed of two physical systems S, and S, with the logics L, and L,,
respectively, is a kind of tensor product (or free orthodistributive product)
of the logics L, and L,. Essentially, only the case in which the logics were
complete and atomistic orthomodular lattices was treated. In the category of
Hilbert space logics, there was shown (Matolcsi, 1975; Aerts and Daubechies,
1978) that there are two tensor products of the logics L (H,) and L,(H,),
namely, L(H,®H,), ie., the logic of the tensor product H,®H,, and
L(H,®H,), ie., the logic of the tensor product H,®H,, where H, is the
dual of H,. [The case of real or complex separable Hilbert spaces of the
dimension at least three was considered. In the case of complex Hilbert
spaces the tensor products L(H,® H,) and L(H,® H,) are not equivalent.]

The definition of a tensor product (or free orthodistributive product) of
orthomodular o lattices was proposed by Matolcsi (1975) in the following
form.

Definition 1. Let L,(i€l) and L be orthomodular o lattices. Then
(L,(u;);e ;) is a tensor product (or free orthodistributive product) of the L;s
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if (i) u;: L; — L are orthoinjections (i € I'), (ii) U, ¢ ;4,(L;) generates L, (iii)
for every finite or countable subset F of I, U, ru,(a;)=0 for a,€ L, if
and only if at least one g, is zero, and (iv) u;(a,) is compatible with uia;)
for all i, j € I such that i = j.

2. TENSOR PRODUCT OF QUANTUM LOGICS

In this paper, we shall call a “quantum logic” the pair (L, M), where L
is an orthomodular o lattice (we shall call it a logic) and M is a set of states
which is quite full for L, i.e.,

(meM:m(a)=1)c{(meM:m(b)=1} impliesa=5b
(a,be L) (1)

We shall further suppose that the Jauch-Piron condition in the countable
form is satisfied, i.e.,

00
m(a;)=1 foralli=1,2,... impliesm(/\a,-)=1 (meM) (2)
i=1

Basic facts on logics and states can be found in ‘Varadarajan (1968).

We shall give a definition of the tensor product in the category of
quantum logics. The definition is given for two quantum logics (L, M,)
and (L,, M,), but it can be in a natural way generalized to any set (L;, M,),
iel

Definition 2. Let (L, M,),(L,, M,),(L, M) be quantum logics. We say
that (L, M) is a tensor product of (L,, M) and (L,, M,) if there are
mappings a, 8 such that:

() a: L, XL,>L,B: M XM,—>M,

B(ml’mz)(a(al’az)) =m(a;)m,(a,)

foranym,eM,, a,€ L, i=1,2 Here L, X L, and M, X M, are the direct
products.

(i) B[M, X M,]={B(m,,my): m € M, m, € M,) is quite full for L.

(iii) L is generated by a[L, X L,], i.e., the smallest sublogic of L
containing all a(a,,a,),a,€L,,a,€ L,, is L.

We shall denote the product by (L, M), g.
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Let L,, L, be orthomodular o lattices. A map y:L,—» L, is a o
orthohomomorphism if (i) ¥(1)=1, (i) Y(V 2,a;,)=V 2 ,¢¥(a;) for any
sequence (a,)C L, (iii) y(a*)=y(a)*,a€ L,.

A o orthohomomorphism is called orthoinjection if it is one-to-one. A o
orthohomomorphism which is one-to-one and onto is a bijection.

Proposition 1. Let us define
Ly~ L, ¢ Ly~ L

a, —a(a,l) a,—a(l, ay)

Then ¢,, ¢, are orthoinjections.

Proof. From B(m, myXa(1,1))=m (1)m,(1)=1 for all m, € M|, m,
€ M,, and from the fact that B[ M, X M,] is quite full for L, we obtain that
afl,1)=1. (We write 1 for the greatest element in any of L, L,, L). From
this we have that ¢, (1)=1, ¢,(1) =1. Further,

B(m,,my)(a(a* 1)) =m\(a,* )my(1)
=m(ai)=1-m(a)) = (1= m(a,))m,(1)
=1=m(a))my(1) =1-B(m,, m;)(a(a,,1))
=B(m,,my)(ala;,1)*)

for all m, € M|, m, € M,, which implies that ¢, (a,* )= ¢,(a,)*. Similarly,
p,(a,")=p,(a,)*. Now let (a,*)¥_, be any sequence in L,. From the
Jauch-Piron property (1) we get B(m,, m,) a(A,a)%, 1)) =1 iff m,(A.a)%)
=1 iff m,(a;*)=1 for all k iff B(m,, m,)(Aa(a*,1))=1 for any m, €
M|, m, € M,, which implies that a(Aa /%, 1) = Aa(af, 1), Le., @,(Aa*)
= A ,,(a,*). By the duality we obtain that ¢,(V,a,*) = V,p,(a,*), so that
@, is a o orthohomomorphism. The same holds for ¢,. Now
B(m,, my)a(a,,1))=B(m;, my)a(a/,1)) for all me M,,m, €M, im-
plies that m,(a,)=m (a,’) for all m, € M|, so that a, = a,’. From this we
see that @, and ¢, are injections. [ |

Proposition 2. For any a, € L, and a, € L,, ¢,(a,) is compatible with
®,(a,).
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Proof. For any m € M|, m, € M,,

B(m,,my))(a(a,)Aa(l,a;))=1 iff B(m;,m;)(a(a),1))=1,
B(my, my)(a(l,a;)) =1 iff m(a;)=1,m;(a,) =1iff
:B(ml’mZ)(a(al’aZ))=1

which implies that a(a,,1)A a(l, a,) = a(a,, a,). Now

B(”’h’”z)(a(”lal)/\a(],az)) =1 iffﬁ(mhmz)(a(al*l)) =1,
B(m,,my)(a(l,a,)) =1 iff m(a;)=1,m,(a,)=1iff
B(m,, mz)(a(a,,az)) =1

for any m, € M|, m, € M,, implies that ¢,(a,) and ¢,(a,) are independent
(in the probabilistic sense) in all states of B[M, X M,]. This implies, in
particular, that ¢,(a,) and ¢,(a,) are compatible (see Gudder, 1968). [ ]

Theorem 1. Let (L, M), 8 be the tensor product of (L,, M,) and
(L,, M,) in the sense of Definition 2. If we put

L~ L, $: L,—'L

a,—a(a,l) a,~a(l,a,)

then (L, ¢, ,) is the tensor product of L, and L, in the sense of
Definition 1.

Proof. (i) Evidently, u(L,)Uuy(L,)C[u,(L)Vu,(L,)Y' cL"=L.
On the other hand, [u,(L,)Uu,(L,)]” is an orthomodular sub-o-lattice of
L, containing both u;(L,) and u,(L,). As L is generated by u,(L,) and
u,(L,), we obtain that [u,(L,)Uu,(L,)]"= L.

To prove (i), let ¢,(a,)A @,(a,) =0 and a, = 0. As ¢,(a,)A p,(a,)=
a(a,, a,), we get from B(m,, m,)(@,(a,)A ¢,(a,))=0 for any m, € M,, m,
€ M,, that m,(a,)m,(a,)=0 for any m, € M|, m, € M,. Let m;° € M, be
such that m,°(a,)=1. (Such m,° exists because M, is quite full for L, and
a, = 0.) Then m °(a,)m,(a,) =0 for any m, € M, implies that m,(a,) =0
forany m, e M,, ie, a,=0.

(ii)) By Definition 2 (iii), L is generated by afL, X L,]. As for any
a€L,a,€L,, a(a;,a,)=9,(a,)A ¢,(a,), we see that ¢,(L,)Ue,(L,)
generates L. [ ]
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3. SOME PROPERTIES OF THE TENSOR PRODUCT

Let (L, u,, u,) be the free orthodistributive product of L, and L, in the
sense of Definition 1. For a subset M of an orthomodular lattice K put
M'={a€ K:a< bforany be M}. (We write a © b if a is compatible with
b.) The set K’ is the center of K. We shall study the relations between the
centers L, L,’, and L’. We shall need the following lemma.

Lemma 1.A. ¢ homomorphism u: L, — L, between two orthomod-
ular o lattices L, L, is injective iff u(a)=0impliesa=0(a€ L,).

Proof. Let u(a)=0 imply a=0 and let u(a) < u(b), a,b€ L,. Then
u(a)—u{a A b)=0 implies u(a—a A b)=0 and this impliesa—a A b= 0,
1.e., a=a A b. Hence, u(a) < u(b) implies a < b. From this it follows that u
is injective. The converse implication is clear. [ ]

Theorem 2. Let (L, u,, u,) be the free orthodistributive product of
L, and L, in the sense of Definition 1. Then the following hold:

(i) [ul(LI)U “2(L2)]”= L
(ii) [“n(Ll)/\ uZ(LZ)]m[uI(LI)/\ “z(Lz)]/=“|(Ll,)/\ uy(Ly)

where K, AK,={(aAnb:a€ K ,beK,), K, and K, are any
lattices, and

(iii) [u,(L))Vuy(Ly)] =L

Proof. (i) Evidently, u (L )V u,(L,)C[u,(L,)Vu,(L,)]"cL”=L.On
the other hand, [u,(L,)Uu,(L,)]” is an orthomodular sub-o-lattice of L,
containing both u,(L,) and u,(L,). As L is generated by u,(L,) and
u5(L,), we obtain that [u,(L,)Uu,(L,)]"= L.

(i) Asae b,a, be L, implies u,(a) © u(b) in L, we have u,(L,")C
u,(L,). By Definition 1 (iv), u,(L,)Cu,(L,) and u,(L,)Cu,(L,Y. Evi-
dently, u,(L,)Cu,(L,). Now if a€u,(L,")A u,(L,") is of the form a=
u,(a) )N uy(ay), then u,(a,) o u (L)) [ie., u(a;) e u (b)) for any b, € L|]
and u,(a,) © u,(L,), from which it follows that u,(a;) © u,(L)A u,(L,).
Similarly, u,(a,)< u,(L,)A u,(L,). From this it follows that u,(a,)A
u,(a,)€fu,(L)Au,(L,)). Hence u,(L,"YA uy(L,") C[uy(L)A uy(Ly))
Nu (LA uy(Ls).

On the other hand, let a € [u,(L,)A u5(L;) Nu,(L,)A uy(L,) be of
the form a=u(a;)Au,(a,) (a,€L,,a,€ L,). We have ae u (LA
u,(L,), especially a & u|(b,) for all b, € L, and a © u,(b,) forall b, € L,.
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Thus

u (b)) = [ (a))Auy(a)]Au (b)) V[u(a)Auy(ay))] ™t Au(b)
= [ (a) A uy(ay)] A uy(B)V [uy(a)) v uylay) * [ Au(b)
and
(b)) A uy(ay) =u,(a,)Auy(a) A (b)V [u(a)* Vuy(ay)*]
A uy(ay)Au(by)
=u(a; Ab)Auy(ay)Vu(a Ab)Au,(a,)
=u(a, Ab Vair Ab)Auy(ay). (3)
Now let us consider the map

L, > L

a,—u(a;)Au,(a,)
where 0 = a, € L, is fixed. As u\(a)) @ u,(a,) foralla,€L,, u, , isao
orthohomomorphism from L, into Ly, .,y={b€L:b<u,(a,)). By
Lemma 1, u; ,, is injective. From this it follows that (3) implies that

by=a,Ab,Va Ab, forany b, € L,, hence a, € L,". Similarly, a, € L,".
Thus we have shown that

[uI(LI)A uZ(LZ)]’nuI(Ll)A u(Ly) Suy(LY)Auy(Ly)

(iii) For any 4, BC L we have (AN B) > (A’U B’Y’. By (ii) we get
[ul(L’])A uz(le)]'= (u (L) A uy(Ly) N [uy(L)A uz(Lz)],),

> ([“l(Ll)/\ “2(L2)]’U[“1(L|)/\ uy(L,)]")

Asu (L) Cuy(L)Auy(Ly), uy(Ly)Cuy(L)A uy(Ly), we have

[“l(Ll)Uuz(Lz)]”C [u,(L))A uz(Lz)]"

On the other hand, as a< b;,a< b, imply a<> b, A b,, a,b,,b, € L, we
get

[ul(Ll)Uuz(Lz)]IC [uI(Ll)A “2(L2)]’
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ie.,
[ (L)Vuy(Ly)]" = [u (L) Auy(Ly)]”
Hence
([ (L) A uy(Ly)]) U [ (L)) A uy(L)]7)”

2 [u (L) Ay (L))" = [u (L) Vuy(L,)] = L

by (i). Thus
[u (L) Auy (L)) =L

Taking the commutant once again we obtain

[”l(Lll)/\uz(Lz')]”=Ll- n

Corollary 1. Let (L, u),u,) be the product of L, L,. Then L is
irreducible only if L, and L, are irreducible.

Proof. If L is irreducible, then L’ = {0, 1). By Theorem 2, (iii) u,(L,") C
L', uy(L,y< L', which implies that L', = L', = {0, 1}. ]

Corollary 2. The tensor product (L, u|, u,) is distributive iff L, and
L, are distributive.

Proof. Let L, and L, be distributive, i.e., L, = L, i =1,2. From Theo-
rem 2, (iii) we gel u (L, )— u(L)H)c L, uz(L~)— uz(L_)C L. As u (L))
and u,(L,) generate L, we get L'=L. From this it follows that L is
distributive. If L is distributive, then L=L’. For i=1,2, u,(L)YC L=1L’
implies u,(L,)Cu, (LY N u,(L)=u,(L/), t.e., u,(L,)=u,(L/), which im-
plies that L, = L/. ]

Let (L,u,,u,) be a product of L, and L,. For any O0=a,€ L,
(O==aI € L,) the maps u, axuze ) defmed by u, slay) = u(a) A

uy(a,)u, , (az)— u,(a,)A u,(a,)] are injective [see proof of Theorem 2,

(in)].

Corollary 3. Let L, L, be irreducible orthomodular o lattices and
(L, u,,u,) be their product. To any c€ L', ¢+ 0,1, let there be
byeL, (or b€ L)) such that u, , (or u,, ) is surjective and
cAuy(by)y= u,(bz) 0 (or ¢ A uy(b, Y= u (b ) O) Then L is irre-
ducible.

Proof. Letc€ L', c=0,1. The map u, ,_ is injective and surjective, i.e.,
it is a bijection. Let ¢, € L, be such that u, p(€1) =€ A uy(b,y). Then
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uy p,(c) o uy , (L)) implies ¢, & L, ¢, = 0,1, a contradiction with the irre-
ducibility of L. [

Remark 1. The statements of Theorem 2 are similar to that proved in
Zecca (1968) by another definition of the tensor product.

Example 1. Let (X, S) be a measurable space, where S is a o algebra of
subsets of X, and let 9 be a set of probability measures on S containing all
measures p. . concentrated on the points x € X. Evidently, 9L is quite full for
S, and the Jauch-Piron property in the countable form is fulfilled. A
quantum logic (S, M) of the type just described is called a classical logic
(Gudder, 1970). Let (S;, 9,), i = 1,2, be two classical logics, where S;is a o
algebra of subsets of a space X;, i=1,2. Let S be the product ¢ algebra on
X, X X,. The set of all product measures p, X i, x € X, y € X,, is quite
full for S. Let us set '

@5, XS, > S
E X F— FE X F,i.e., ais the identity map
B, XM, =M
(Byop2) =y X gy
where M = {p, X py: p; € M, M, € M,}. Then
B(wy.po)(a(Ey, Ey)) = py X py(Ey X Ey) =y (E\ )y (Ey)

and it can be easily checked that (S,91), sz is the tensor product of
(S, 9M,) and (S,, IM,) in the sense of Definition 2.

Example 2. Let us consider the case in which (L, M,) is a quantum
logic and (L,, M,) is a classical logic. This case is important from the
physical point of view: it describes measurements of quantum observables
by classical measurement devices. Let us set

oL —L, ¢ L, > L

a—a(a,l) b—a(l, b)

where (L, M), 4 is the tensor product of (L,, M;), i =1,2. By Theorem 2,
(i), @,(L,)=q,(L,")C L', where L’ is the center of L. If (b,)*, is any
partition of identity in L,, then {@,(b,;)}?2, is the partition of identity in L’.

Then L can be written as a direct sum L =72, Ly, . and the logics
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L. ¢,5,y are irreducible iff @,(b;), i =1,2,... are atoms in L. If the maps
5 L= L
a— o, (a)Ag,(b,)

are surjective, then the logics L, ., are isomorphic with L, so that L
can be written as the direct sum of the copies of L, indexed by the set

(b}

4. TENSOR PRODUCT OF COMPLETE ATOMISTIC
LATTICES

We shall consider quantum logics (L, M), where L is a complete
atomistic lattice and M is a set of pure states such that to any atom e € L
there is exactly one state p € M for which p(e)=1. From the Jauch-Piron
property we get that for any pe M, {a: p(a)=1}={a:e <a), where e is
the atom such that p(e) = 1. The Jauch~Piron property is then fulfilled not
only for countable sets, but for any sets. Clearly, M is quite full for L.

Theorem 3. Let (L, M) and (L,, M,) be two quantum logics such
that L, and L, are complete atomistic orthomodular lattices and
M, and M, are sets of pure states such that to any atom e, € L,
(e, € L,) there is exactly one state p, € M| ( p, € M,) such that
p(e)=11[py(e;)=1]. Let a: L, L, and B: M, —~ M, be map-
pings such that

(i) B(m)(a(a))=m(a) forallae L,,me M,
(ii) Bisonto

Then a and B are bijections.

Proof. Let B(m,)=B(m,). then B(m,)a(a))=B(m,) a(a)) for any
a€ L oie., m(a)=m,(a) for any a€ L,. Hence m;=m,. Thus 8 is
one-to-one.

Now B(m)(ea(at))=m(a*)=1-m(a)=1- B(m)a(a)) = B(m)
(a(a)*t) for all B(m)€E M,, and as B[M,]= M, and M, is quite full, we
have a(a*)=a(a)?*.

From the Jauch—Piron property we obtain that for any index set [,
B(m)} A c,a(a))y=1=B(m)a(a;))=1 for all i€l = m(a;)=1 for all
i€leom(A;cra)=1eB(mla(A,c,a,))=1 for B(m)€E M,, hence
a(Aca)=N",;c,a(a;).

From B(mYa(1))=m(1)=1 for all B(m) we get a(l)=1. Thus we
have shown that a is an orthohomomorphism.
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If a(a)=a(b), then B(m) a(a))= B(m) a(b)) implies m(a)=m(b)
for all m € M|, so that a = b. Hence a is one-to-one.

Let A, C L, be the set of all atomsin L, i=1,2. Lets;: M, > A, i=1,2
be such that m,(s;(m;))=1. Let a€ 4,. If a(a)& A,, then there are
e e, €A,,e,e;<a(a). Let g,=5,""(e)),q;=5,""(e;) and let q, =
B(p1)q, = B(p;), p\, P, € M. Then q\(a(a)) = g,(a(a)) =1 implies p,(a)
= p,(a)=1, but this implies that p, = p,. Hence e, =s,°8(p)=
s;°B(p)=e,, ie, a(a)€ A,. For pe M, p(s,(p))=1 implies that
B(p)a(s(p))=1,1ie, s;°B=acs, Let a, be a restricted to A;. Then
@y A, > A, and @, =s,°B°5,"". As 5,5, and B are bijections, a, is
also a bijection.

Let c€ L,. Then c=V{c¢;i¢, € Ay, ¢, <c)=V{a,(az'(c): ¢, <cy=
a{Va,~ '(¢;): ¢, < ¢)), ie., a is onto. We have shown that « is an isomor-
phism. [ ]

Theorem 4. Let (L, M,), (L,, M;), and (L, M) be quantum logics
with the properties described in Theorem 3. Let (L, M), g be the
tensor product of (L, M,) and (L,, M,). Then the maps
Pyt Ly L[O.cp:(h)l
a—ala,b)
are bijections for any atom b € L,.
Proof. Let us consider the maps

Py Ly L[o.q;z(h)]

a—ala,b)
and
:Bq3M|_’B[M|x(‘1>]
p—B(p.q)

where g € M, is such that g(b) =1. Let ¢, ¢, € Ly 4, (5y- From the fact that
BI[M, X M,] is quite full, we obtain

B(m,my)(c;)=1=B(m, m,)(c,)=1implies ¢, < ¢,
But ¢, ¢; < 9,(b), so that

B(my,my)(c)=1= (ml»mz)(‘Pz(b)) =1
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i.e., (m,my)ea(l, b))=1, hence m,(b)=1. As b is an atom, m, = q. From
this we see that

B(m,,q)(c;)=1=B(m,,q)(c,)=11implies ¢, < ¢,

ie., the set B[ M, X{(q)}] is quite full for Ly, ;. ). As the map B,: M, —
BIM, X {q}] is onto, it follows from Theorem 3 that g, , is a bijection. ]

Corollary 4. The map
Pr.at Ly = Lig g, (ay
b—afa,b)

1s a bijection for any atoma € L,.

Remark 2. If L(H) is the logic of all closed subspaces of the Hilbert
space H (complex, separable, dim H > 3), a set of states M is quite full for
L(H) iff it contains all the pure states (see Dvurecenskij and Pulmannova,
1980). Let L,(H,) and L,(H,) be two Hilbert space logics and let us look
for their tensor product. It is natural to put a(P|, P,)=P,®P,, P €L, P,
€L, and B(9,,9,)=9,9¢,, ¢, € H|, 9, € H,. But L(H®H,) (as well as
L(H,®H,)) cannot be a tensor product in the sense of Definition 2, because
for the normed superposition £.¢;@; X §,, ¢, € H,, §, € H,, the correspond-
ing state is not contained in B[ M, X M,], so that the set B[ M| X M,] is not
quite full.

It depends on the physical nature of the considered physical systems, if
the coupled system can be described by a tensor product in the sense of
Definition 2 (or Definition 1), or if there should be put some additional
conditions (e.g., the superposition principle).

Definition 2 could give a good mathematical description of the cou-
pling of two physical systems in the case that at last one of the systems is a
classical one, as it can be seen from the following section.

5. TENSOR PRODUCT OF ONE CLASSICAL
AND ONE QUANTUM LOGICS

We recall that the direct sum ®,.,L, of a collection {L,:a€ I} of
logics is the Cartesian product of the sets L, endowed with the coordinate-
wise relation < and unary operation L. That is, if j={}j|, j,,...) and
k ={k,, k,,...) are elements of the product, then j = k (respectively,j * = k)
iff j, < k,, (respectively, j* = k,) for any a € I.
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Theorem 5. Let (L, M) be a quantum logic, where L is a 7 lattice (7
is a cardinal). Let (S, 91L) be a classical logic, where S is the algebra
of all subsets of X, card X = . Then the quantum logic (L, M),
where L=@ L ,L =Lforanyx€ X,and M =(8, . m:me M,
x € X}, where 8,-m({a,},c x)=m(a,) is the tensor product of
(L, M) and (S,91) in the category of T logics.

Proof. First we show that M is quite full for L. Letabel, a=
{a)cex b={b),c x> and let
(peM:p(a)=1)c{peM: p(b)=1)

Forp=06,m,x€ X,wegetm(a,)=1=m(b)=1,me M, ie,a,<b,. As
this is fulfilled for any x € X, we obtain a < b.
Let us define the mappings «, 8 as follows:

a:LXS—L

E _Ja ifx€E
(a’ )'_)<ax>xeX’ a {O lfxﬁE

B: M XM —->M

(m,p,) =08, m
Then

B(m,u,)(a(a, E))=8-m({a}) {m(a) ify€E

0 ifye E

ie., B(m,p Na(a, E))=m(a)-p (E). o

Clearly, B{M X 9M]= M, and M is quite full for L-L is generated by
the elements a(a,{x)),a € L, x € X. Hence (L, M) is the tensor product of
(L, M) and (S, ). [ |

A set ] is said to be real measurable (or of real-measurable cardinality)
if there exists a nontrivial o-additive measure p:2/ — (0,1) which vanishes
at points.

In Manasova and Ptak (1981) there is proved the following statement.

Theorem 6. Let (L :a€ I} be a collection of logics, I non-real-
measurable. Let m be a state on ®_,.,L,. Then there exists a
sequence {a,:n€N C [} and a partition of unity {p, :n € N)
such that, for any a=(a,,a,,...)€ &, ,L,, '

>}

m(a)=m(a,,a5,...) = X p,m,(a,)

n=1

where m,, 1s a state of L,,.
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For NC M put N={me M:N(a)=1=m(a)=1), where N(a)=1
means that m(a) =1 for all m € N [see Gudder, 1971].

Theorem 7. Let (L, M) be a quantum logic such that L is a 7
lattice, 7 is non-real-measurable cardinal, and let the Jauch-Piron
property in 7 form hold, ie., m(a,)=1, a € I, card I = 7 implies
that m(A ,.,a,)=1 for any m € M. Further, let there be to any
N C M an element a € L such that N={(m& M:m(a)=1). Let
(S, 9N) be a classical logic such that S is the algebra of all subsets
of X, card X = r. Then if (L, M)a p is a tensor product of (L, M)
and (S,9M), then L=& L ,L =L, and M=(8 -m:x€ X, m
EM).

Proof. Put
u,:L—-»l.,, uZ:S—>1:

a— a(a, X) E~a(l,E)

It is easy to check that u,, 4, are + homomorphisms. By Theorem 2, (iii),
u(S)C L', so that u,({x)) € L’ for any x € X. Then L can be written in the
foorm L=o, . XE[O.uz((x))]' It can be shown as in the proof of Theorem 4,
that the set B[M X p,} is quite full for Ly, , (.- Put

Uy xt L= Lig, ey
a~ a(a,{x})
We show that u, , is surjective. Let c € L[o.u,«x»]- Let us set
N={meM:B(m,p)(c)=1)

If a € L is the element such that N={(me M: m(a)=1)}, then {pE[M X
pd: p(e) == (peBIM X p]: pla(a(x)=1), ie, c=ala,(x)=
u, (a

¥ X(Tl)ms we have shown that L=& __ L , L =L, x € X. By Theorem 6,
any state p e B[M X O] is of the form p=1XL> 1Pa «, From
B(m,p, Xa(a, E))=m(a)p,(E) it follows that B(m, p ) = [ ]

The representation of a tensor product in the form of the dlrect sum of

copies of L indexed by X might be appropriate for describing quantum
measurements; any of the copies L of L would correspond to some position
on the scale of the measurement apparatus.
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